3D Bézier Volume Model From a Stick Figure Using Semi-Simploidal Sets

D. Aholou, S. Peltier (XLIM/ASALI, Univ. Poitiers)

G. Morin (IRIT, Univ. Toulouse)

Journées du GTMG 2-3 juillet 2020 Nancy – virtuel

Modeling a 3D free-form object

Skeletons

+ intuitivemodeling+ adapted for

Surface mesh

+ classical model

Volume mesh

- + supports physical
- + simulation
- + necessary for 3D printing

TIRIT

Modeling a 3D free-form object

Skeletons

+ intuitive modeling + adapted for

Surface mesh + classical

Volume mesh

- + supports physical
- + simulation
- + necessary for **3D** printing

Context & Goal

Goals :

Benefit from advantages of the three representations :

- start from a (1D) skeleton in \mathbb{R}^3
- a surface (quad) mesh around the skeleton
 - same number of quads around each edge
 - small number of quads around each edge
- a **volume mesh** filling the surface mesh
 - only one 3D cell type
 - non degenerate cells
 + Control topology and geometry

Mesh Scaffold from Skeleton

• B-Mesh

Quad layout

Extraction of the Quad Layout of a Triangle Mesh Guided by Its Curve Skeleton, Usai et al. ACM ToG 2015

Converting skeletal structures to quad dominant meshes, Bærentzen et al. SMI 2012

Scaffolding skeletons using spherical Voronoi diagrams: Feasibility, regularity and symmetry, Suárez et al. – CAD 2018

Mesh Scaffold from Skeleton

Scaffolding a Skeleton, Panotopoulou et al., Research in Shape Analysis, 2018

Skeleton

Quad mesh

Volume model from Skeleton

Scaffolding a Skeleton, Panotopoulou et al., Research in Shape Analysis, 2018

Based on Simploidal Bézier sets

Handling Subdivided objects

- Combinatorial structure (topology) + operations
- Bézier Embedding (geometry)

Outline

✓ Context & Goal

- Filling in the quad mesh
- Handling non linear, free form 3D objects
- Joining the branches in 3D
- Conclusion Future Work

Mesh Scaffold from Skeleton

Scaffolding a Skeleton, Panotopoulou et al., Research in Shape Analysis, 2018

Filling The Scaffold

First Idea: cubical sets

Filling the nodes ?

11

Filling The Scaffold

Presented by Paul Viville, GTMG 2020

Filling The Scaffold

Generation of simplices

Cone operation **type** : (k)

dimension : k

Cuboids

o Generation of cuboids

Product operation **type** : (1, ..., 1) **dimension** : k

Simploids

[Dahmen - Michelli 82]

Products of simplices

Semi-Simploidal Sets [Peltier et al. 09]

- set of abstract simploids $K = \{K^i\}_{i \in [0..n]}$
- type operator $\mathcal{T}: K \mapsto \bigcup_{i=0}^{\infty} \mathbb{N}^{*i}$ $\sigma \mathcal{T} = (a_1, \dots, a_n)$
- face operators $d_{i}^{i}: K^{i} \to K^{i-1}$ satisfying constraints

Geometric Modeling with Bézier spaces

Handling Subdivided objects

- Combinatorial structure (topology) + operations
- Bézier Embedding (geometry)

Outline

✓ Context & Goal

- ✓ Filling in the quad mesh
- Handling non linear, free form 3D objects
- Joining the branches in 3D
- Conclusion Future Work

Non linear : Bézier

 A 1D-object is embedded into 3D as a Bézier curve

20

• Bézier simplex [Farin 2002] of dimension i and degree d

$$P(u) = \sum_{\alpha \in \Gamma_d^i} P_{\alpha} B_{\alpha}^d(u)$$

- $\circ P_{lpha}$ Control points
- multi-indices $\Gamma_d^i = \{ \alpha = (\alpha_0, \cdots, \alpha_i) \mid \alpha_0 + \cdots + \alpha_i = d \}$
- Multivariate Bernstein Polynomials $B^d_{\alpha}(u) = (\frac{d!}{\alpha_0!\cdots\alpha_i!})u_0^{\alpha_0}\cdots u_i^{\alpha_i}$

• Bézier simplex [Farin 2002] of dimension i and degree d

$$P(u) = \sum_{\alpha \in \Gamma_d^i} P_{\alpha} B_{\alpha}^d(u)$$

- $\circ P_{lpha}$ Control points
- multi-indices $\Gamma_d^i = \{ \alpha = (\alpha_0, \cdots, \alpha_i) \mid \alpha_0 + \cdots + \alpha_i = d \}$
- Multivariate Bernstein Polynomials $B^d_{\alpha}(u) = (\frac{d!}{\alpha_0! \cdots \alpha_i!}) u_0^{\alpha_0} \cdots u_i^{\alpha_i}$

nstitut de Recherche n Informatique de Toulouse NRS - INP - UT3 - UT1 - UT2J

Semi-simplicial set of dimension n $K = \{K^i\}_{i \in [0..n]}$ set of abstract simplices $d_j : K^i \to K^{i-1}$ face operators $d_j d_l = d_l d_{j-1}, j > l$ commutation properties

Institut de Recherche en Informatique de Toulouse CNRS - INP - UT3 - UT1 - UT2J

XI

Each simplex stores its « proper » control points

No redundancy

TIRIT

- Keeps topology consistency
- > Multi-indices can be retrieved using face operators

Cubical Bézier Spaces

Semi-Cubical sets [Brown Higgins 81]

- abstract cubes
- face operators

$$(e_1 \times e_2)d_j^1 = (e_1d_j \times e_2)$$
$$(e_1 \times e_2)d_j^2 = (e_1 \times e_2d_j)$$

commutation properties

25

Bézier Simploid [DeRose et al. 93]

of type (a_1, \ldots, a_n) and degree (d_1, \ldots, d_n) :

 $P(u^{1}, \dots, u^{n}) = \sum_{\alpha^{1} \in \Gamma_{d_{1}}^{a_{1}}} \dots \sum_{\alpha^{n} \in \Gamma_{d_{n}}^{a_{n}}} P_{(\alpha^{1}, \dots, \alpha^{n})} B_{\alpha^{1}}^{d_{1}}(u^{1}) \times \dots \times B_{\alpha^{n}}^{d_{n}}(u^{n})$ control points $\{P_{(\alpha^{1}, \dots, \alpha^{n})}\}$ identified by tuples of multi-indices

Semi-Simploidal Bézier Sets

Semi-Simploidal Sets [Peltier et al. 09]

• set of abstract simploids $K = \{K^i\}_{i \in [0..n]}$

• type operator
$$\mathcal{T}: K \mapsto \bigcup_{i=0}^{\infty} \mathbb{N}^{*i}$$

 $\sigma \mathcal{T} = (a_1, \dots, a_n)$

• face operators $d_{i}^{i}: K^{i} \rightarrow K^{i-1}$ satisfying constraints

Branches & Kites

Branch : Semi-simploidal Set (assembly of 4 prisms)

Branches & Kites

Generating a free from volume

- Each branch is a 4-prism (semi-simploidal Bézier set)
- Each prism is a Bézier volume (simploid) of degree 3
- **Topology consistency**, C⁰ at the joints

Outline

✓ Context & Goal

- ✓ Filling in the quad mesh
- ✓ Handling non linear, free form 3D objects
- Joining the branches in 3D (on going work)
- Conclusion Future Work

en Informatique de Toulouse

32

arity 2

arity 3

Volume Mesh : assembly of branches (identification of kytes) **built incrementaly**

Joining the branches in 2D

Contraction Contra

Joining the branches in 3D

Scaffolding a Skeleton, Panotopoulou et al., Research in Shape Analysis, 2018

XIII

4 quads around each edge

-> proves minimal for regular branches

-> constructs a quad mesh around the joint in 3D (more general than 2D)

BUT the proposed construction does not generate all possible configurations

Joining the branches in 3D On going work

Generalizes to arbitrary number of branches in 3D → Any arity can be handled (+ cells orientation)

Joining the branches in 3D On going work

We show that all (non degenerate) topological joining configurations may be generated through an iterative kite opening process

Joining the branches in 3D

We showed that :

Incremental kite opening leads to any configuration !

Future work (current work of Damien !)

- Geometric embeding for the points
 - ➤ Linear setting
 - Non linear setting
- Independance to branch order
- Convexity of the branches

Conclusion

Conclusion:

We propose an algorithm for Bézier volume mesh generation from skeleton

- 4 quads around each edge
- > only one volume cell type (prisms)
- border is a Bézier surface mesh

Topology : no cracks !

Special thanks to the *Poitevins* **Benoît Gougeon, Clément Castin, Damien Aholou et Valentin Fredon** For the software development of the volume model (Master project)

Future work - long term

Model smoothness

≻ C⁰ is « for free »≻ Splines,...

Animation / Simulation

- Motion on control points
- Continuous motion over the mesh
- Phycical constraints

• Question ?

Question

Given a sphere with k points

Canonical Quad mesh with k quads

In this case, we can obtain a canonical Volume Mesh

Semi-Simploidal Sets [Peltier et al. 09]

• set of abstract simploids $K = \{K^i\}_{i \in [0..n]}$

• type operator
$$\mathcal{T}: K \mapsto \bigcup_{i=0}^{\infty} \mathbb{N}^{*i}$$

 $\sigma \mathcal{T} = (a_1, \dots, a_n)$

 \circ face operators $d_j^i: K^i \to K^{i-1}$ satisfying constraints

$$(\sigma_1 \times \cdots \times \sigma_i \times \cdots \times \sigma_n) d_j^i \longrightarrow (\sigma_1 \times \cdots \times \sigma_i d_j \times \cdots \times \sigma_n)$$

Semi-Simploidal Sets [Peltier et al. 09]

• set of abstract simploids $K = \{K^i\}_{i \in [0..n]}$

• **type operator**
$$\mathcal{T}: K \mapsto \bigcup_{i=0}^{\infty} \mathbb{N}^{*i}$$

 $\sigma \mathcal{T} = (a_1, \dots, a_n)$

• face operators $d_j^i: K^i \to K^{i-1}$ satisfying constraints

$$(\sigma_1 \times \cdots \times \sigma_i \times \cdots \times \sigma_n) d_j^i \longrightarrow (\sigma_1 \times \cdots \times \sigma_i d_j \times \cdots \times \sigma_n)$$

Semi-Simploidal Sets [Peltier et al. 09]

• set of abstract simploids $K = \{K^i\}_{i \in [0..n]}$

• **type operator**
$$\mathcal{T}: K \mapsto \bigcup_{i=0}^{\infty} \mathbb{N}^{*i}$$

 $\sigma \mathcal{T} = (a_1, \dots, a_n)$

• face operators $d_j^i: K^i \to K^{i-1}$ satisfying constraints

$$(\sigma_1 \times \cdots \times \sigma_i \times \cdots \times \sigma_n) d_j^i \longrightarrow (\sigma_1 \times \cdots \times \sigma_i d_j \times \cdots \times \sigma_n)$$

Semi-Simploidal Sets [Peltier et al. 09]

• set of abstract simploids $K = \{K^i\}_{i \in [0..n]}$

• **type operator**
$$\mathcal{T}: K \mapsto \bigcup_{i=0}^{\infty} \mathbb{N}^{*i}$$

 $\sigma \mathcal{T} = (a_1, \dots, a_n)$

 \circ face operators $d_j^i: K^i \to K^{i-1}$ satisfying constraints

$$(\sigma_1 \times \cdots \times \sigma_i \times \cdots \times \sigma_n) d_j^i \longrightarrow (\sigma_1 \times \cdots \times \sigma_i d_j \times \cdots \times \sigma_n)$$

