Procedural band patterns

Jimmy ETIENNE and Sylvain LEFEBVRE

Context

Context

Context

Groen, J. P., Wu, J., \& Sigmund, O. (2019). Homogenization-based stiffness optimization and projection of 2D coated structures with

Our objective

Proceduraly create parallel bands

Orientation control

Better density control

Overview - Inputs

Overview - Output

P_{Ω}

Lookup
 d

Overview - u

Overview - d

$$
s=\frac{1}{\vec{a}^{\prime}(\tilde{p})}
$$

Finding the id

Finding the id

Lookup

Link borders

Global id

Local id $=\left\lfloor\frac{u(p)}{q d(p)}\right\rfloor$

Link borders

Global id

Global id

Subdivision level

$$
1<\text { step } \leq 2
$$

Subdivision level

$1<$ step ≤ 2

Overview

Our infill

Initial goal

Create a controllable infills for 3D printing

Objectives

Cover a parametric domain with "evenly" spaced paths

Have a good control over density and orientation

Compute the paths as fast as possible

Extracting paths procedurally

Is complicated

Is unstable

3-SAT is not our problem

Creates colored cells from shaders

Extracts the frontier between cells

Generates the paths

How to color the cells?

Through quantization

Control over orientation

Is just a mapping of $\mathrm{R}^{2}=>\mathrm{R}^{2}$

Control over density

Is just another mapping of $R^{2}=>R^{2}$

Quantization with mapping

