Procedural band patterns

Jimmy ETIENNE and Sylvain LEFEBVRE

Context

Eden, O., Elber, G., & Ungarish, M. Adaptive Streamlines Coverage Toward Visualization and Animation of Two-dimensional Unsteady Flows.

Context

Context

Groen, J. P., Wu, J., & Sigmund, O. (2019). Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill. *Computer Methods in Applied Mechanics and Engineering*, 349, 722-742.

4

Our objective

Proceduraly create parallel bands

Orientation control

Better density control

Overview - Inputs

Overview - Output

Overview - u

Finding the id

Finding the id

Link borders

Global id

Global id

Subdivision level

$1 < step \leq 2$

$step = \frac{2}{1}$

Subdivision level

Conclusion

Procédural

Simple

Polyvalent

Overview

Our infill

Create a controllable infills for 3D printing

Objectives

Cover a parametric domain with "evenly" spaced paths

Have a good control over density and orientation

Compute the paths as fast as possible

Extracting paths procedurally

Is complicated

Is unstable

3-SAT is not our problem

Creates colored cells from shaders

Extracts the frontier between cells

Generates the paths

How to color the cells?

Through quantization

Control over orientation

Is just a mapping of $R^2 => R^2$

Control over density

Is just another mapping of $R^2 => R^2$

Quantization with mapping

