SIMULATED ANNEALING-BASED FITTING OF CAD MODELS TO POINT CLOUDS OF MECHANICAL PARTS' ASSEMBLIES

DI GENOVA

GTMG: Journées du Groupe de Travail en Modélisation Géométrique 02-03 July 2020 AUTHORS: SHAH GHAZANFAR ALI Arnaud POLETTE Jean-Philippe PERNOT Franca GIANNINI Marina MONTI

lispen

- **Research question**
- **2** Background
- **3** Objective
- **4** Methodology and proposed approach
- **5** Results and Analysis
- **6** Conclusions Future works

1. Research question

How to reconstruct a CAD part/assembly by segmenting a point cloud of a mechanical assembly?

- To allow "as built" verifications of tolerances, without disassembly, etc.
- To reconstruct parametric CAD parts/assemblies without patch by patch fitting.

2. Background Reverse Engineering

SHAH Ghazanfar Ali, Arnaud POLETTE, Jean-Philippe PERNOT, Franca GIANNINI, Marina MONTI

Exiting Object

*optional modules

4. METHODOLOGY AND PROPOSED APPROACH

5. Results and Analysis (fitting)

Fitting of a Sonotrode (real scan)

This example shows results of fitting of Sonotrode (approx. 257k) in real point cloud that has been obtained using a ROMER Absolute Arm 7520 SI (7 axis, 2m acquisition volume, absolute encoders, RSI laser sensor 30000pts/s) has been used to scan a Sonotrode.

Groups	Parameters	Initial value	Obtained value	
-		(<i>mm</i>)	(<i>mm</i>)	
Gl	Dl	30	34.9872	
	Ll	40	47.6183	
	L2	70	74.0385	
	rl	7	11.4656	
	r2	22	21.1645	
	r3	12	20.0028	
G2	D3	9	6.6348	
	D4	4	7.9101	
	L3	27	29.7042	
G3	r4	0.5	0.8376	

Table. 1: Results for the global fitting of a Sonotrode to a real point cloud obtained by a laser scanner.

Fig.1: Global fitting of a Sonotrode to a real scanned point cloud following 3 optimization loops: (a) scanned Sonotrode; (b) coarse pre-arrangement in the initial point cloud; (c) loop on G1; (d) loop on G2; (e) final fitted part after a loop on G3.

SIMULATED ANNEALING-BASED FITTING OF CAD MODELS TO POINT CLOUDS OF MECHANICAL PARTS' ASSEMBLIES

5. Results and Analysis (fitting) Fitting of robot arms (VS)

To maintain the coherence between the physical system and its digital twin in the scope of the Industry 4.0

Groups	Parameters	Initial value (mm)	Target value (mm)	Obtained value (mm)	Deviation (mm)	Relative error
G1 Move-1	α1	75	90	89.999	0.001	0.0000
	α2	15	30	29.9946	0.0054	0.0002
	A3	65	95	94.9968	0.0032	0.0000
G1 Move-2	α1	89.999	115	114.9987	0.0013	0.0000
	α2	29.9946	55	54.9954	0.0046	0.0001
	A3	94.9968	120	119.9976	0.0024	0.0000
G1 Move-3	α1	114.9987	140	139.9985	0.0015	0.0000
	α2	54.9954	90	89.9935	0.0065	0.0001
	αз	119.9976	170	170.0019	-0.0019	0.0000

Table.1: Results obtained when fitting three successive moves of robot arms parameterized

Fig.1: Fitting of robot arms constrained with assembly constraints and parameterized by 3 rotation angles: (a) initial configuration; (b,c,d) final configurations fitting respectively the first, second and third robot moves.

5. Results and Analysis (fitting)

Fitting part by part valve assembly (VS)

- ➢ Fig.a₁ shows pre-arranged flanges
- ➢ Fig.a₂ shows fitted flanges
- ightarrow Fig.b₁ shows pre-arranged screws
- Fig.b₂ shows fitted screws
- > Fig.c₁ shows pre-arranged nuts
- ➢ Fig.c₂ shows fitted nuts
- ➢ Fig.d₁ shows pre-arranged central part
- Fig.d₂ shows fitted central part

5. Results and Analysis (fitting)

Fitting part by part valve assembly (VS)

- Fig.e₁ shows pre-arranged top plate
- ➢ Fig.e₂ shows fitted top plate
- ➢ Fig.f₁ shows pre-arranged bottom plate
- Fig.f₂ shows fitted bottom plate
- ≻ Fig.g₁ shows segmented PC for flanges
- Fig.g₂ shows segmented PC for nuts & screw
- > Fig.g₃ shows segmented PC for central part
- Fig.g₄ shows segmented PC for top/bottom plate

6. Conclusions and Future works

- Fitting simultaneously several parameterized CAD models
- Resulting CAD models are editable
- Bypasses data manipulation
- > Proposed approach can be used for global and local fitting
- > Proposed approach is modular and each module can still be improved

Future works

- > Energy minimization by putting weight functions to small features.
- > Initialization of initial temperature for the simulated annealing.
- Sensitivity analysis of parameters.
- > 2D /3D fitting techniques using normal and distance-based filters for segmentation.

SIMULATED ANNEALING-BASED FITTING OF CAD MODELS TO POINT CLOUDS OF MECHANICAL PARTS' ASSEMBLIES

THANK YOU Q&A