Variable-width contouring for additive manufacturing

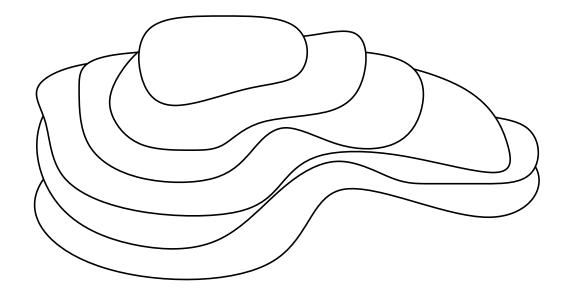
Samuel Hornus,¹ Tim Kuipers,² Olivier Devillers,¹ Monique Teillaud,¹ Jonàs Martínez,¹ Marc Glisse,¹ Sylvain Lazard ¹ and Sylvain Lefebvre ¹

¹ Inria, France
 ² Ultimaker and TU Delft, Netherlands

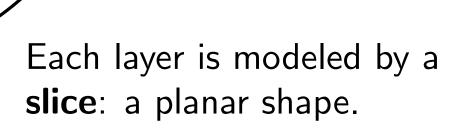
GTMG 2020

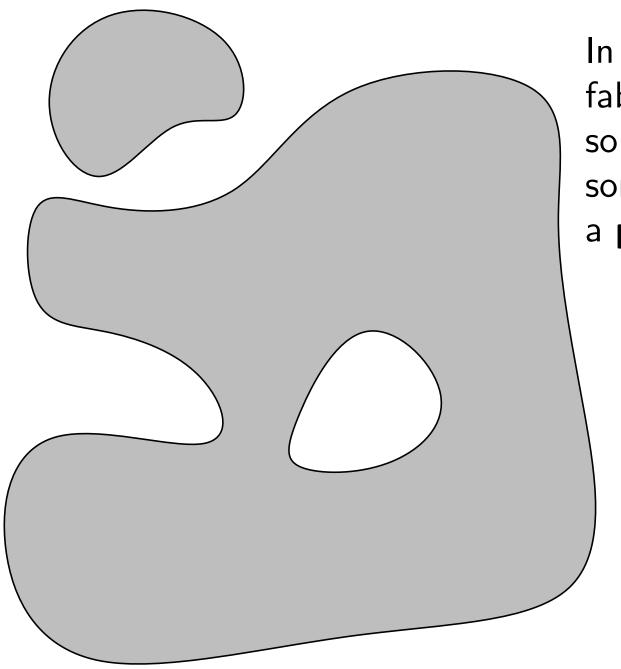
narrated by Samuel Hornus

An object is fabricated as a stack of horizontal **layers**.

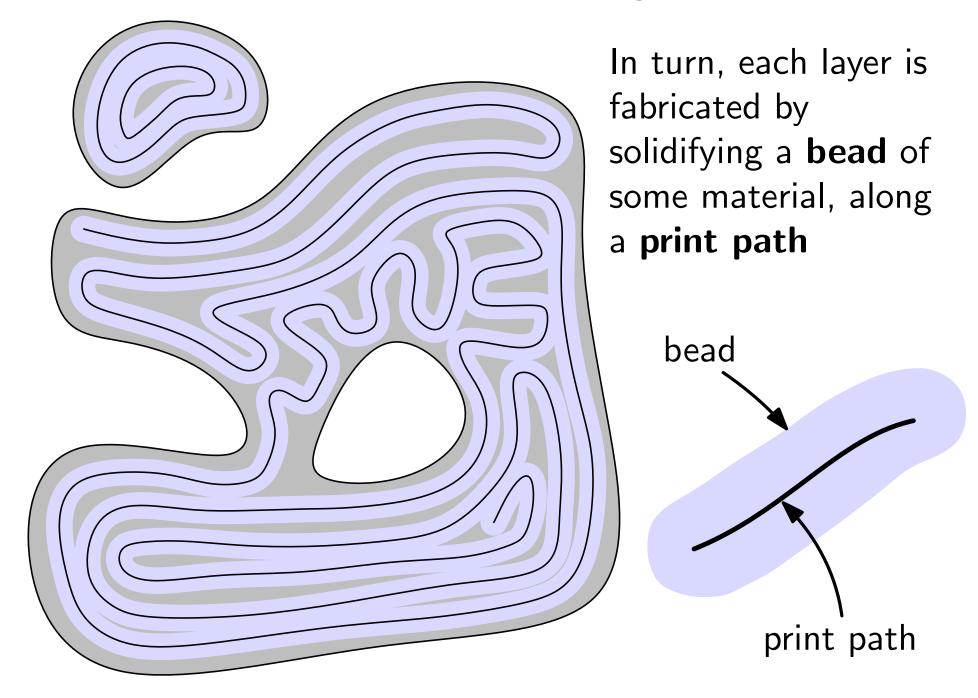


An object is fabricated as a stack of horizontal **layers**.

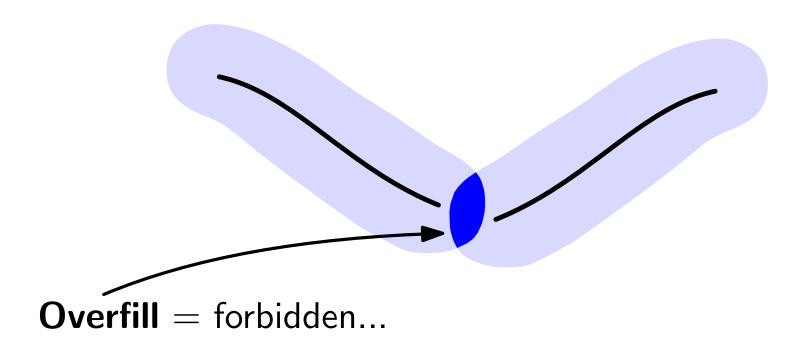




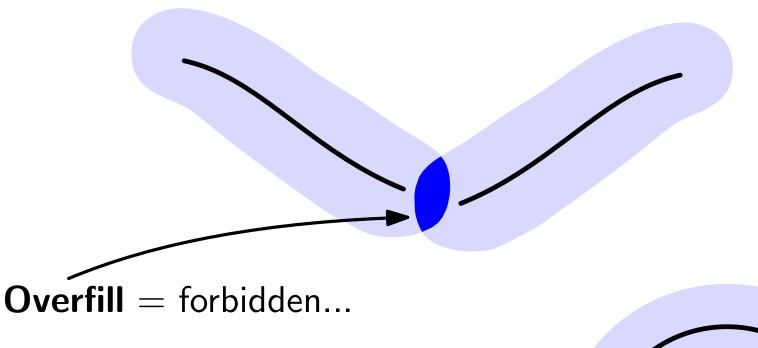
In turn, each layer is fabricated by solidifying a **bead** of some material, along a **print path**



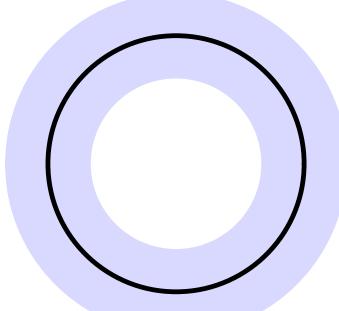
Overfill



Overfill



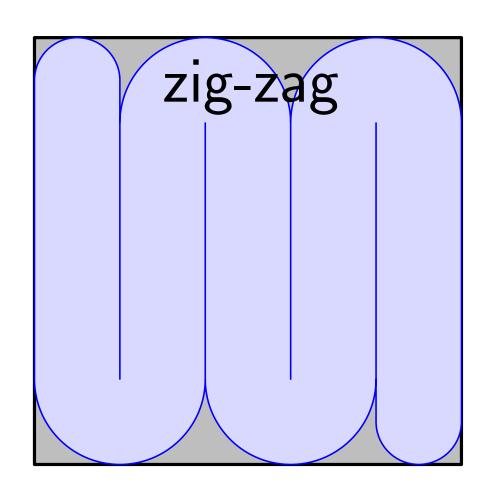
...except for closed beads, a well controlled special case:

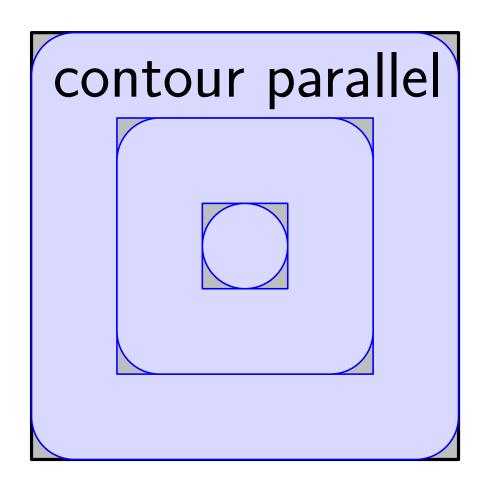


we love closed beads!

Underfill

Example: two classic ways to fill a square with a **constant-width** bead.

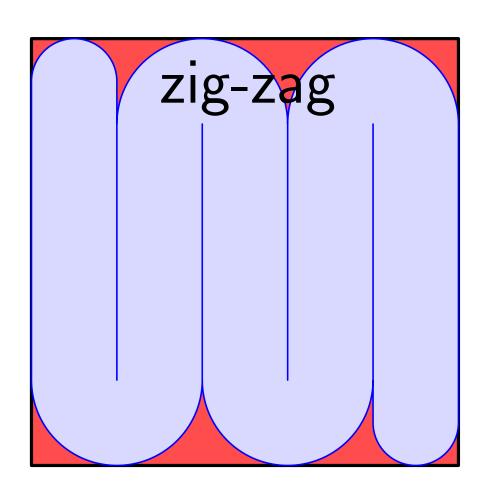


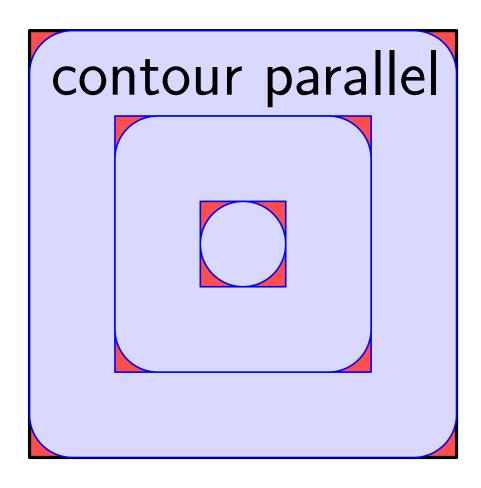


Underfill

Underfill is the existence of areas of the slice **not** covered by a solid bead.

=underfill



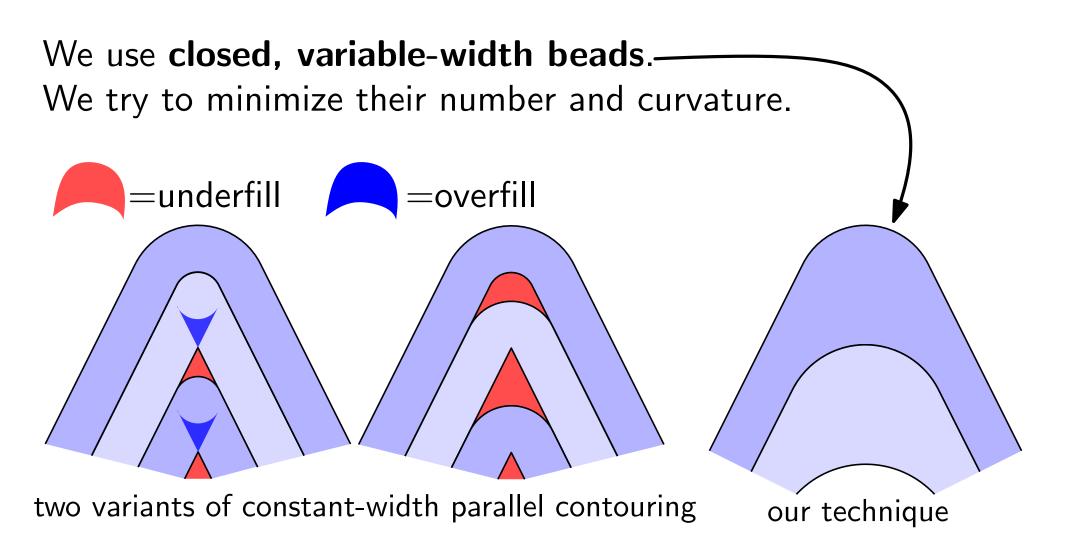


Underfill

Underfill is bad. We want to minimize underfill

What to do?

We follow earlier works suggesting to use variable-width beads.



Inputs

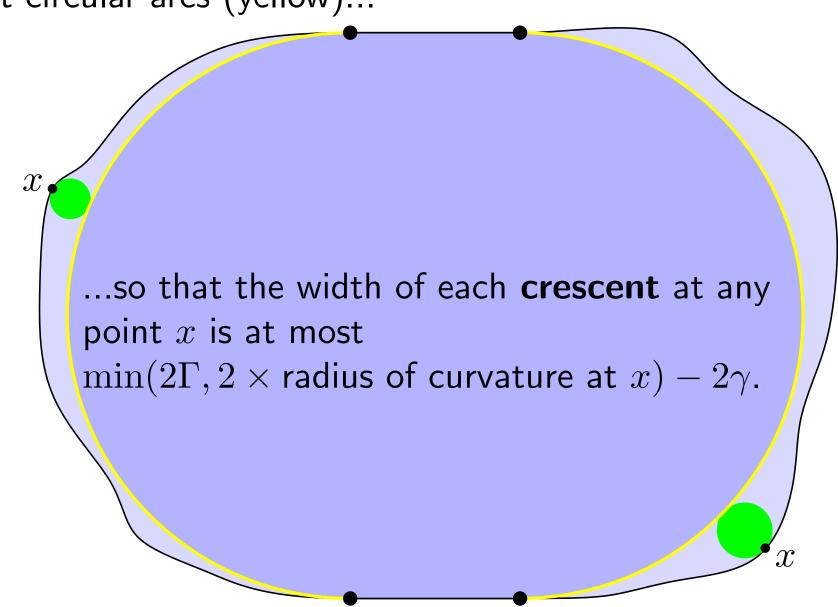
• A range $[2\gamma, 2\Gamma]$ of feasible bead widths (specific to target 3D printer).

• A 2γ -fat planar shape \mathcal{S} : all the maximal disks inside \mathcal{S} have radius $\geq 2\gamma$. 1

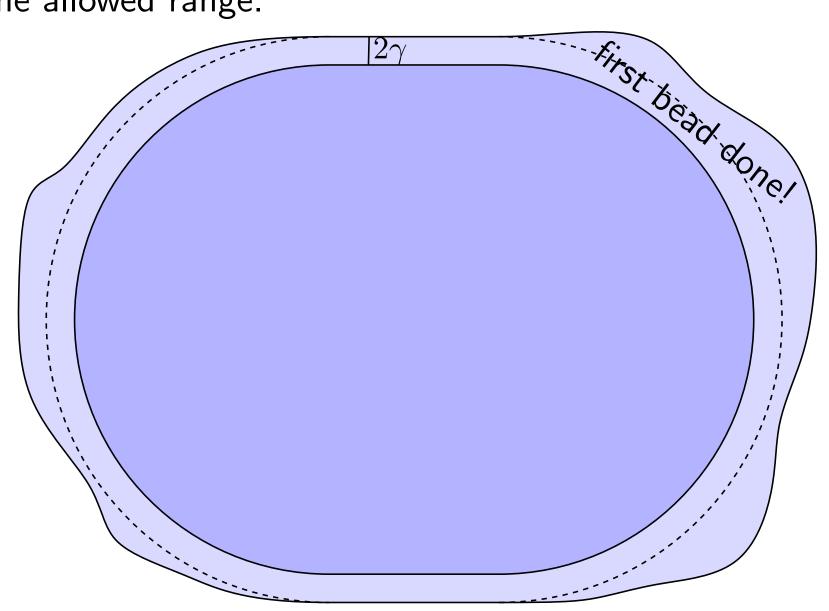
Given a shape S, we model a bead that stays in contact with

the boundary of $\mathcal S$ and make the remaining inner shape "rounder."

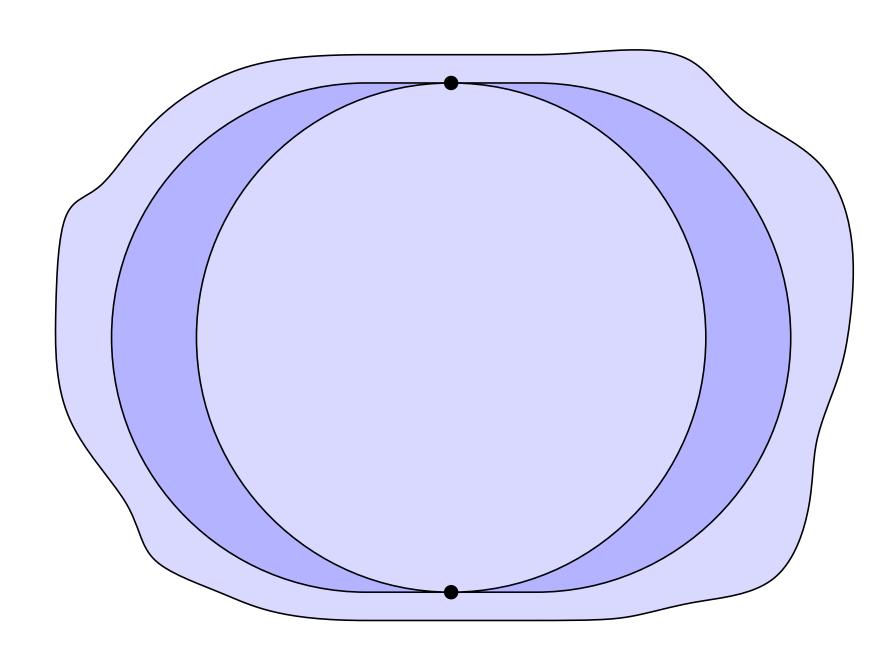
To do so, we replace parts of the boundary ∂S by inner tangent circular arcs (yellow)...



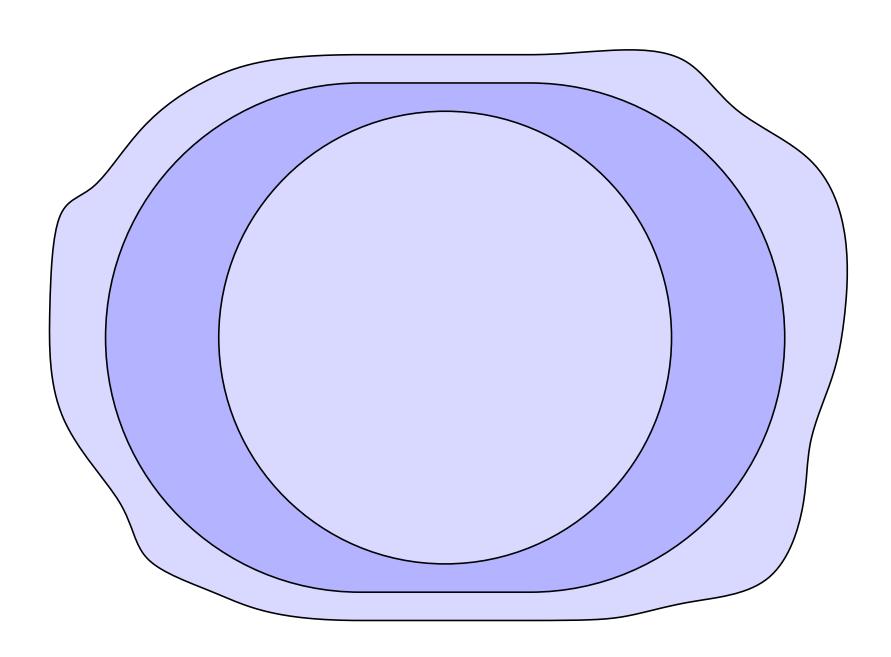
Then we do a parallel offset of 2γ and obtain a bead of width within the allowed range.

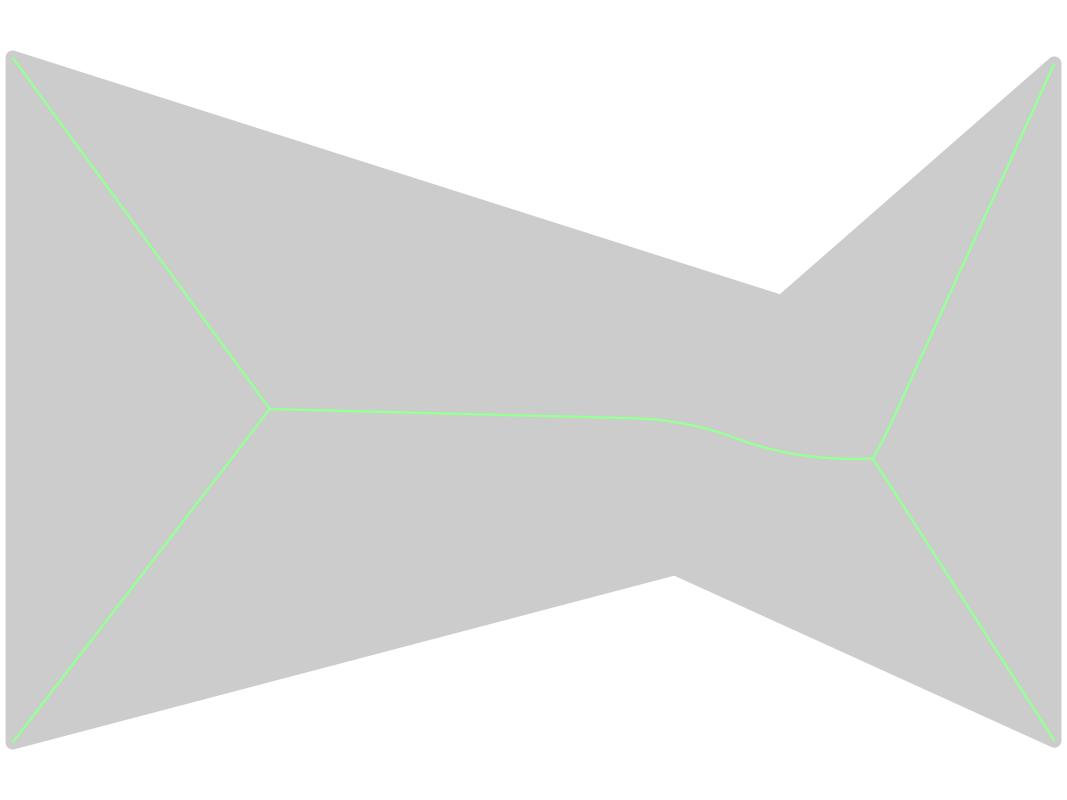


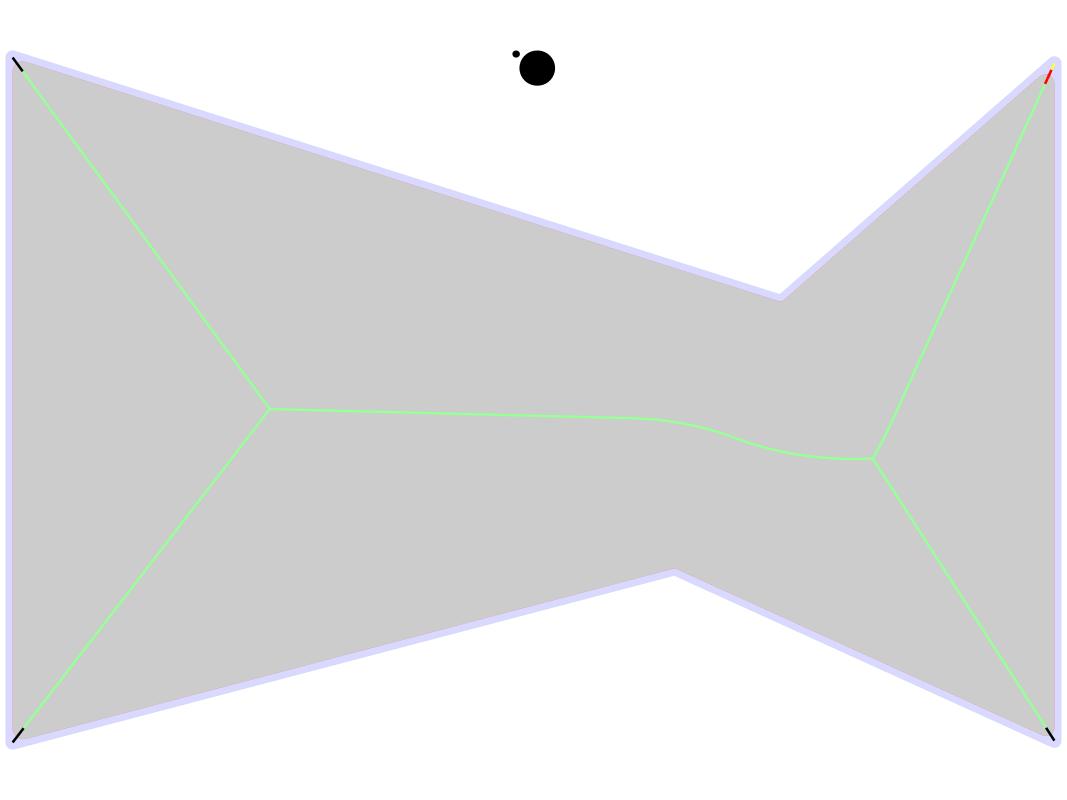
Now we repeat the process

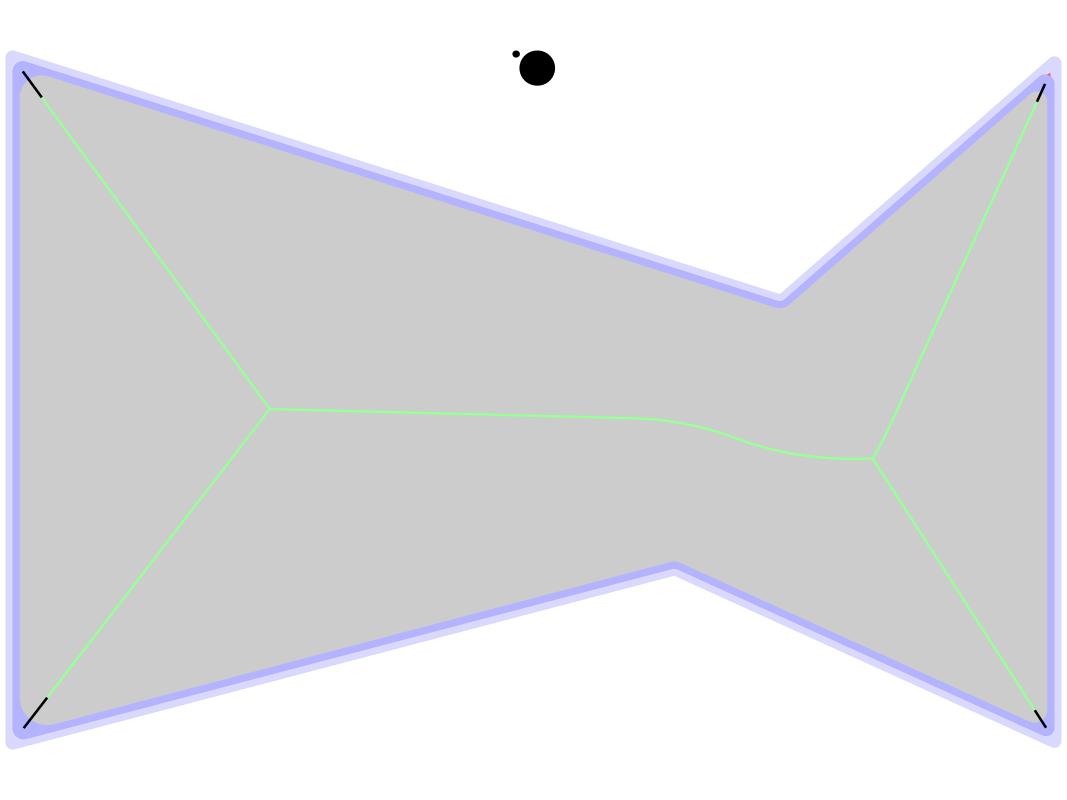


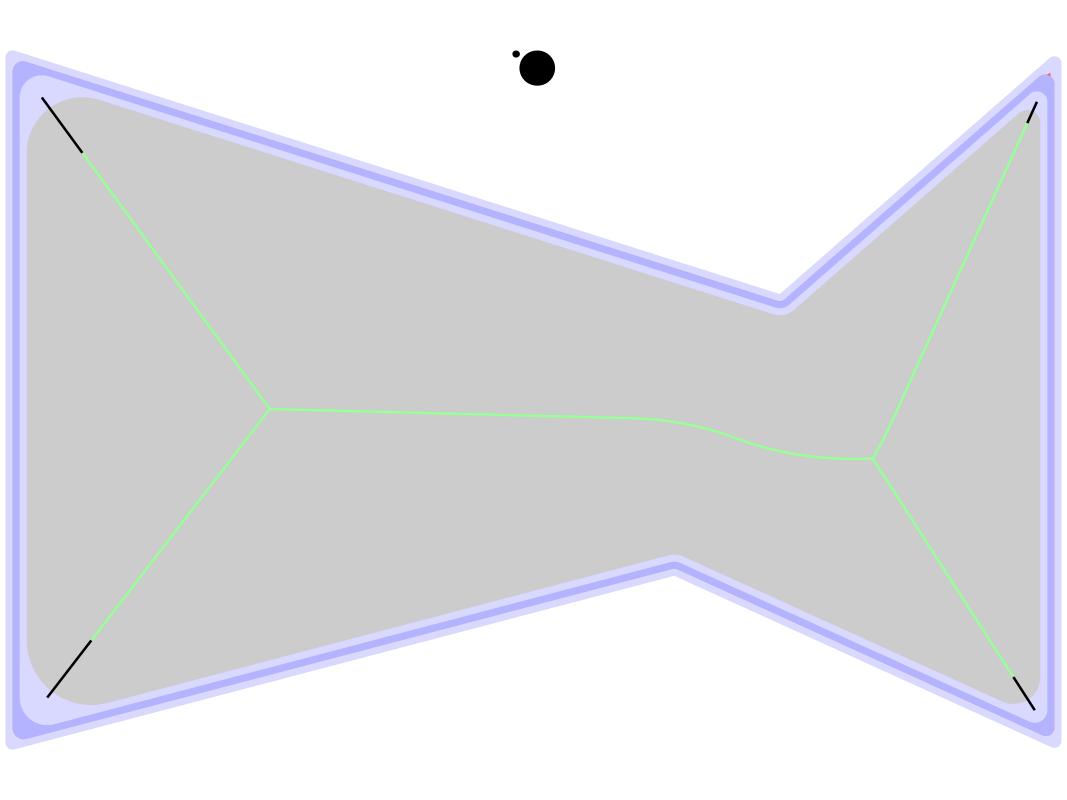
Now we repeat the process

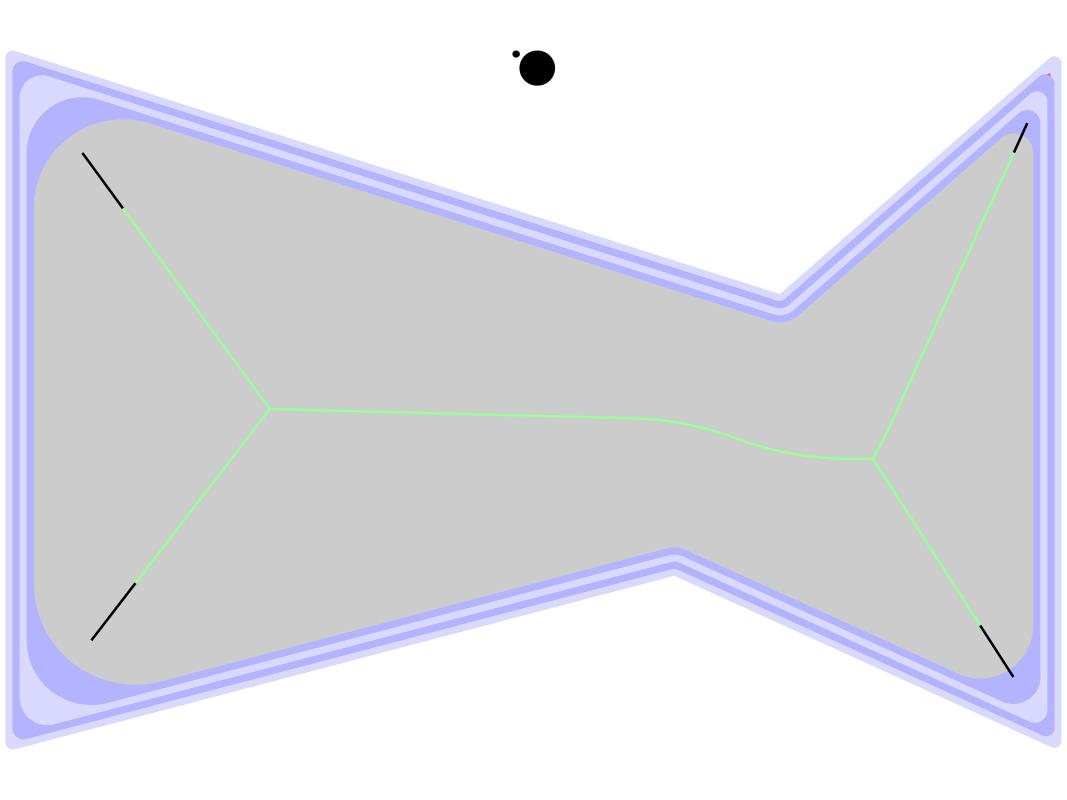


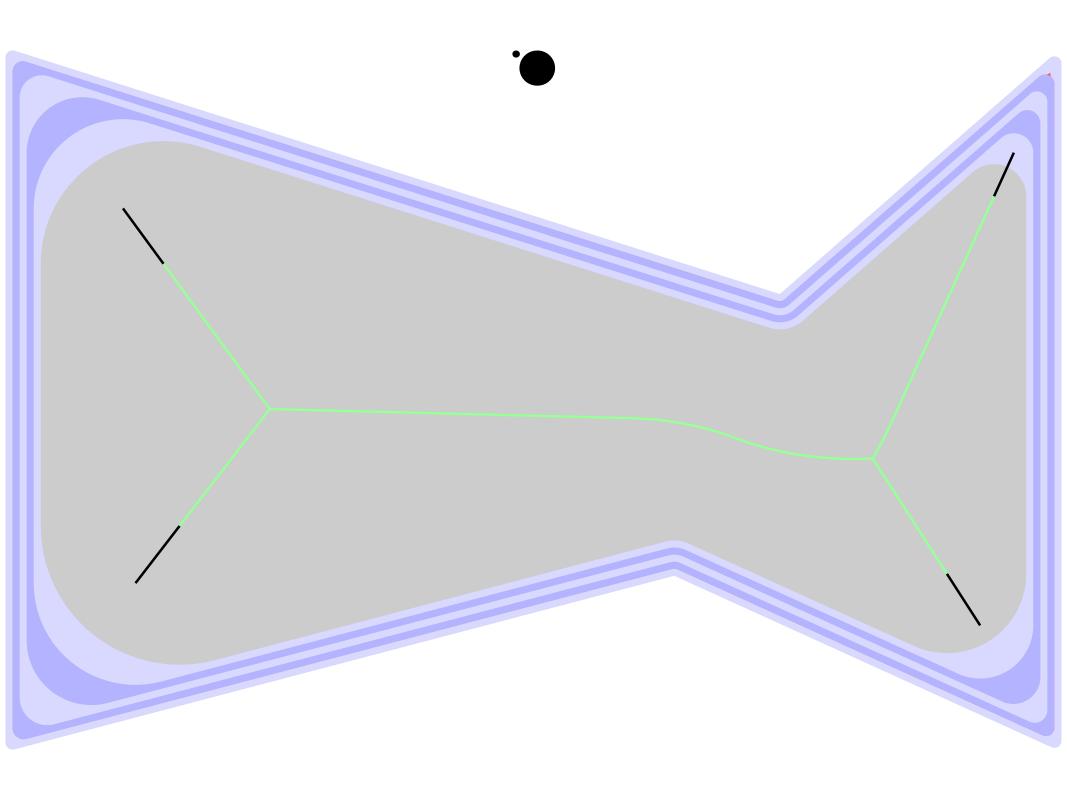


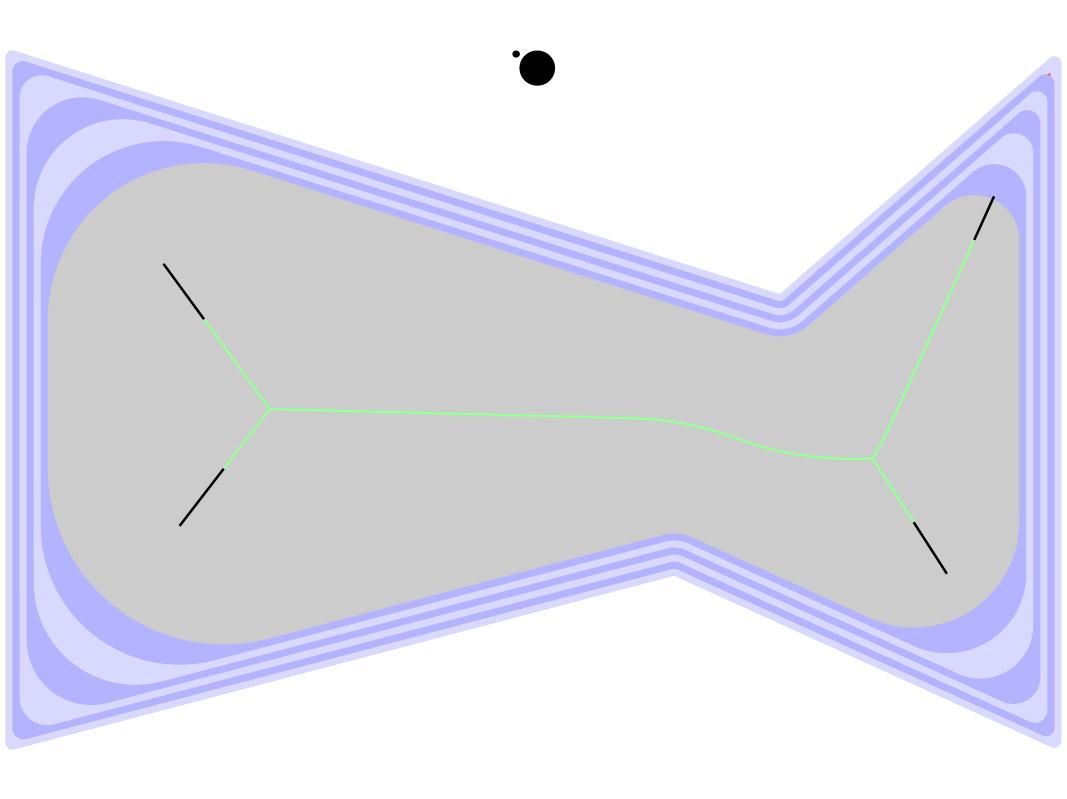


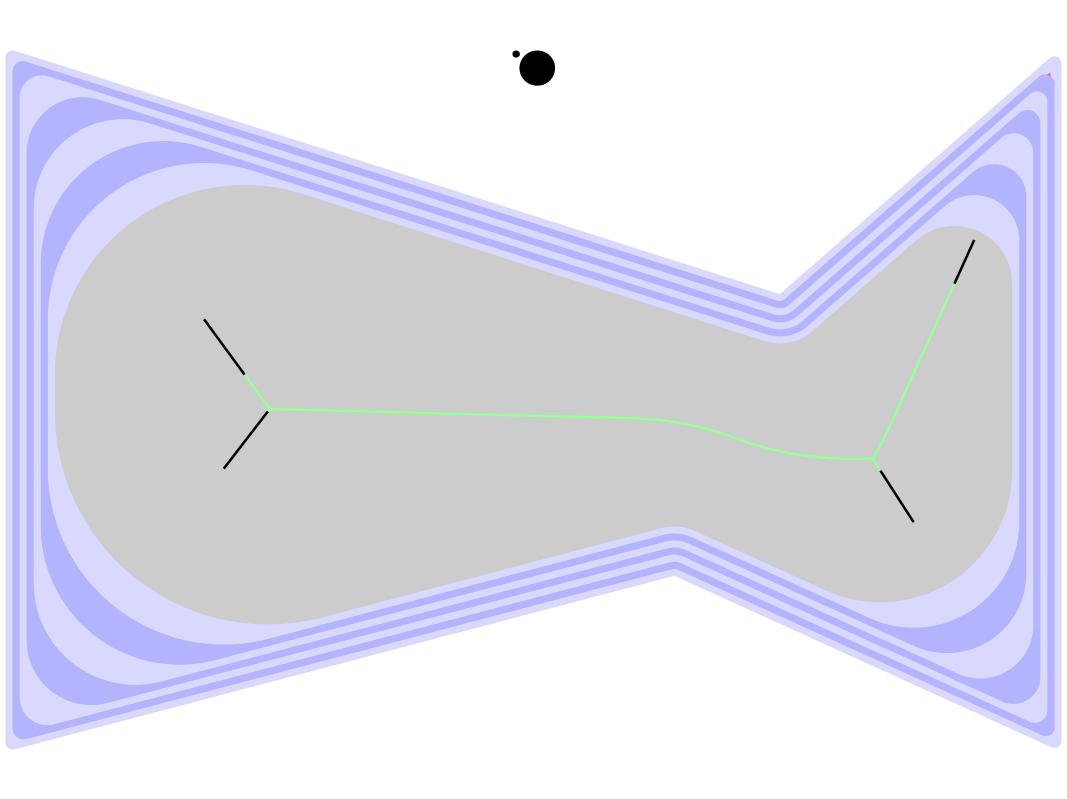


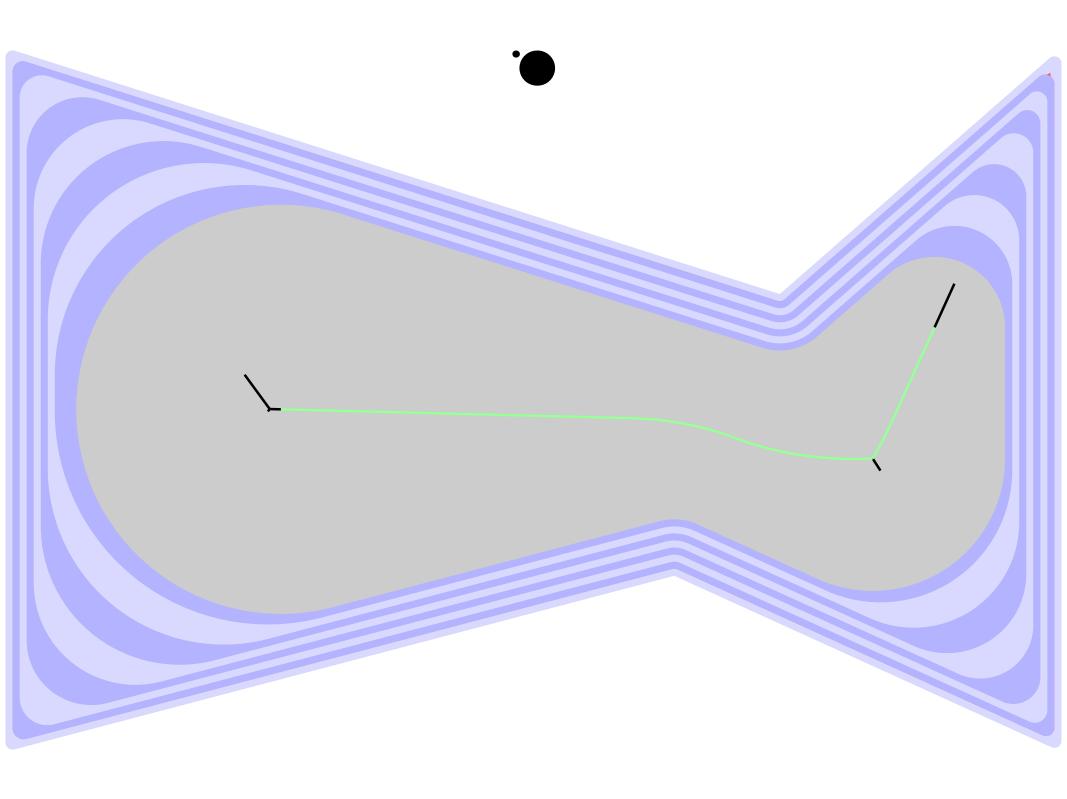


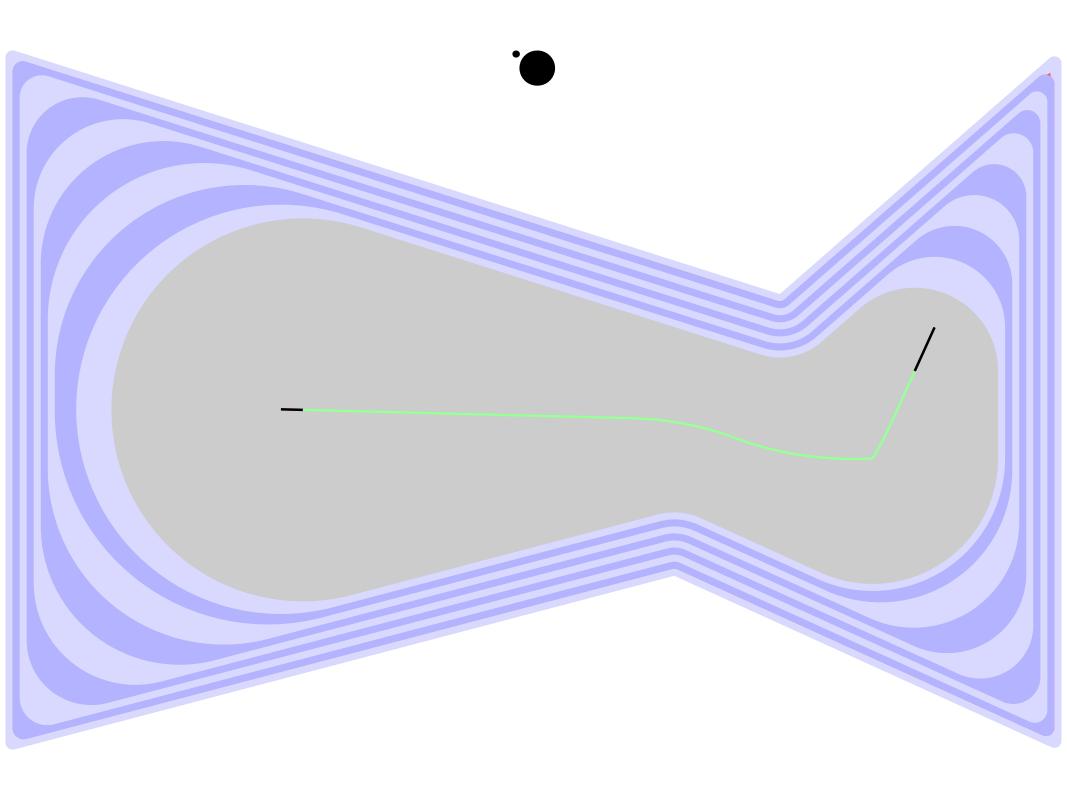


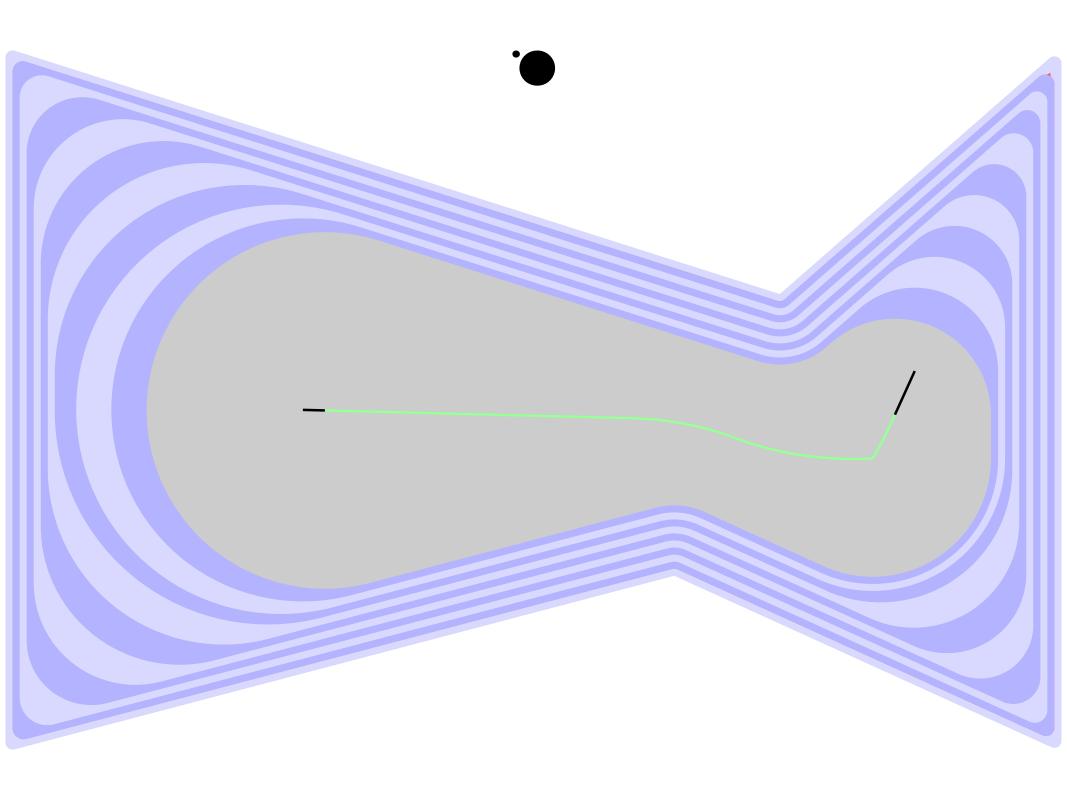


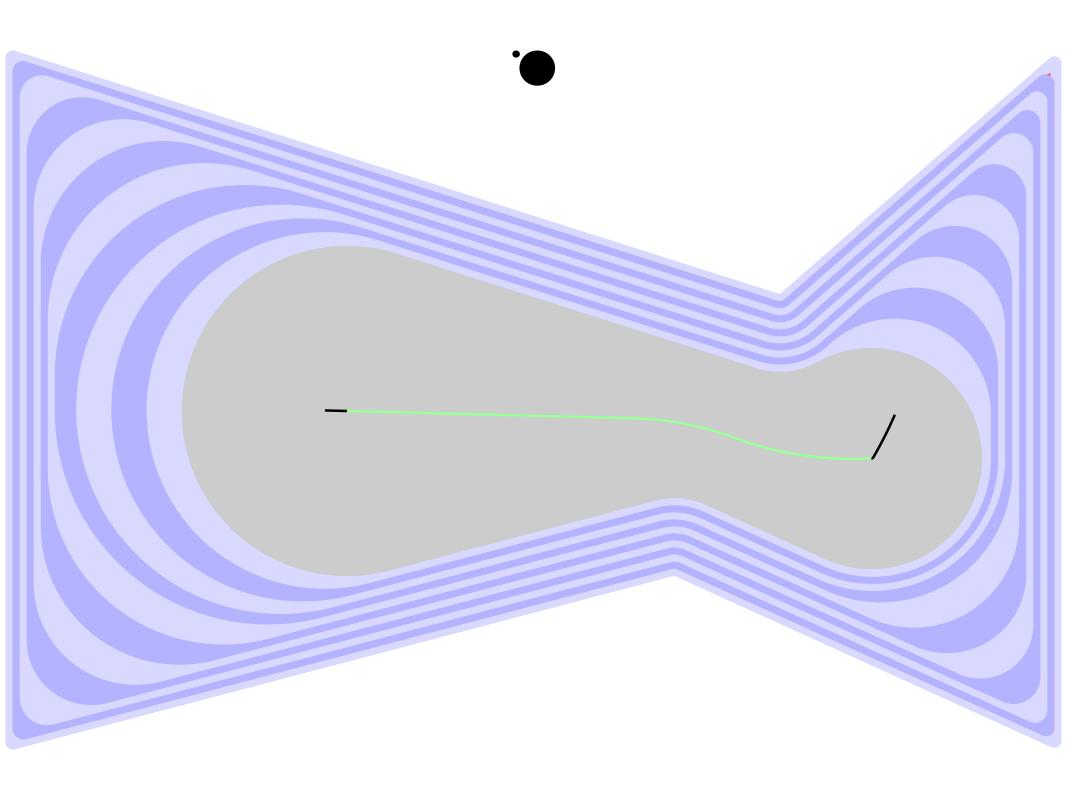


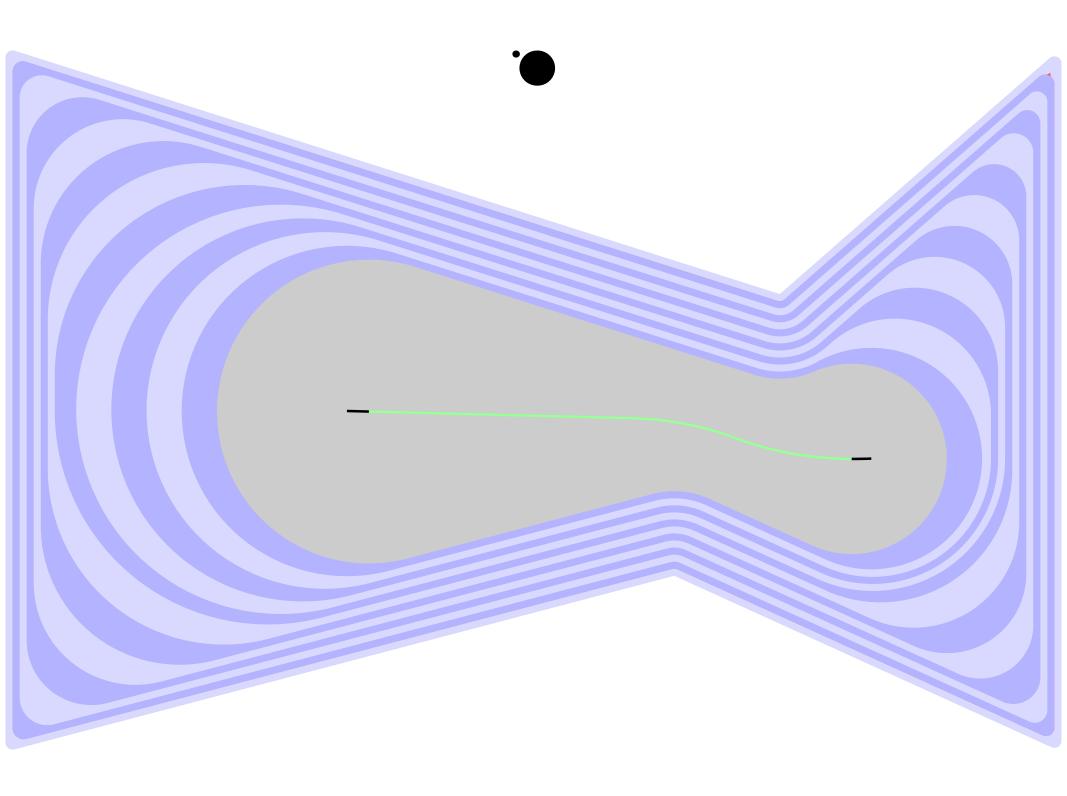


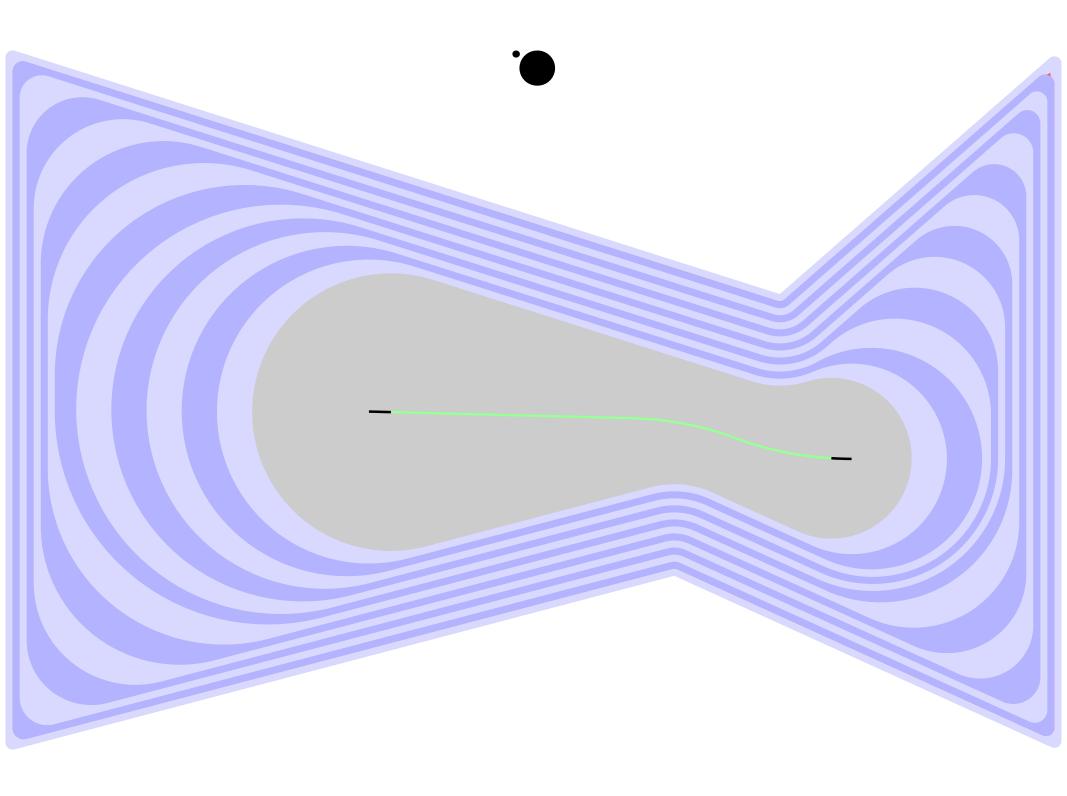


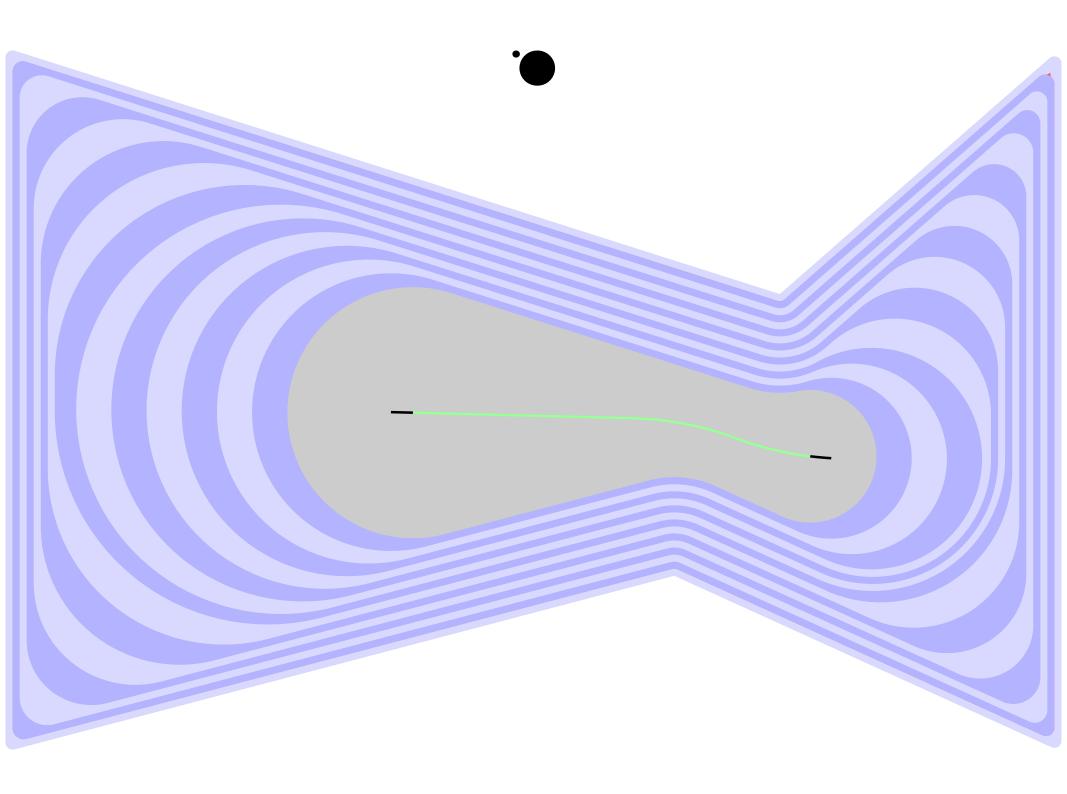


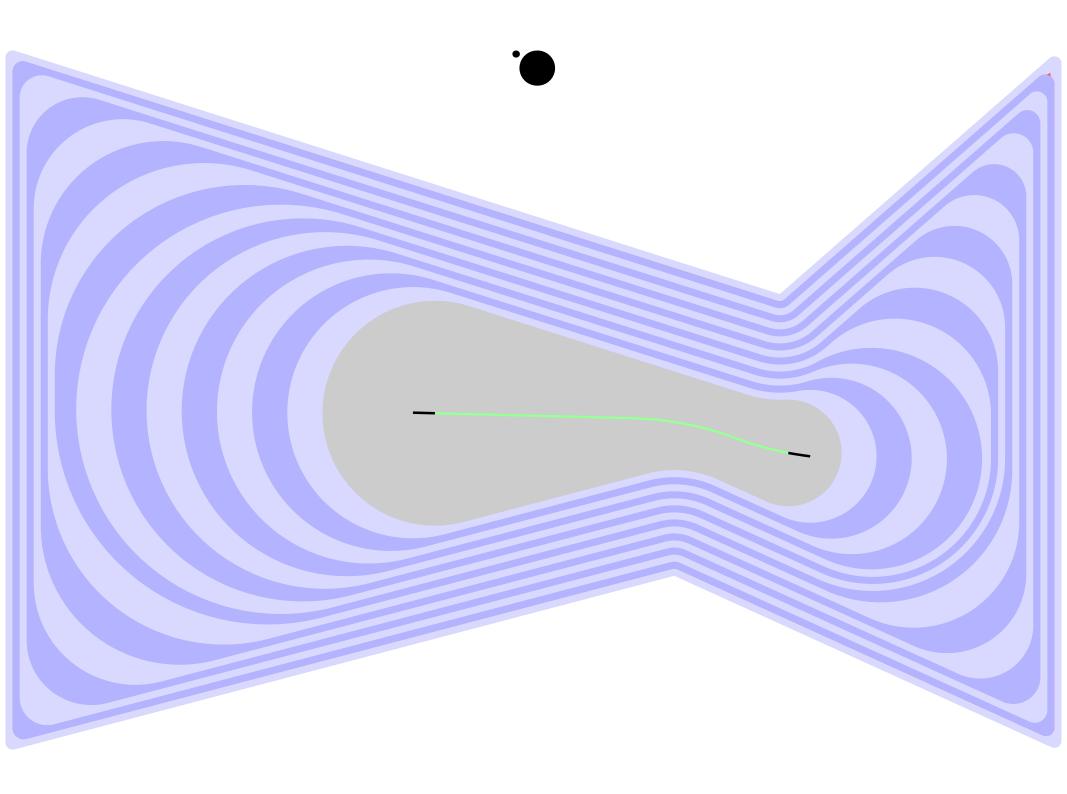


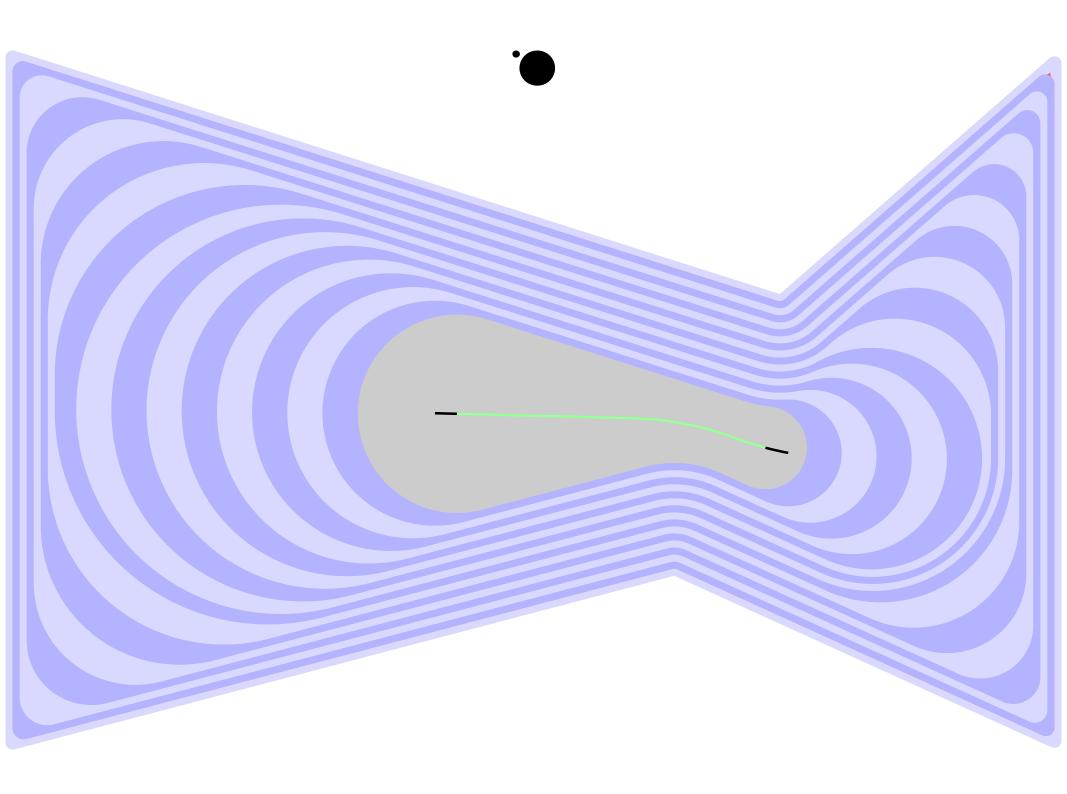


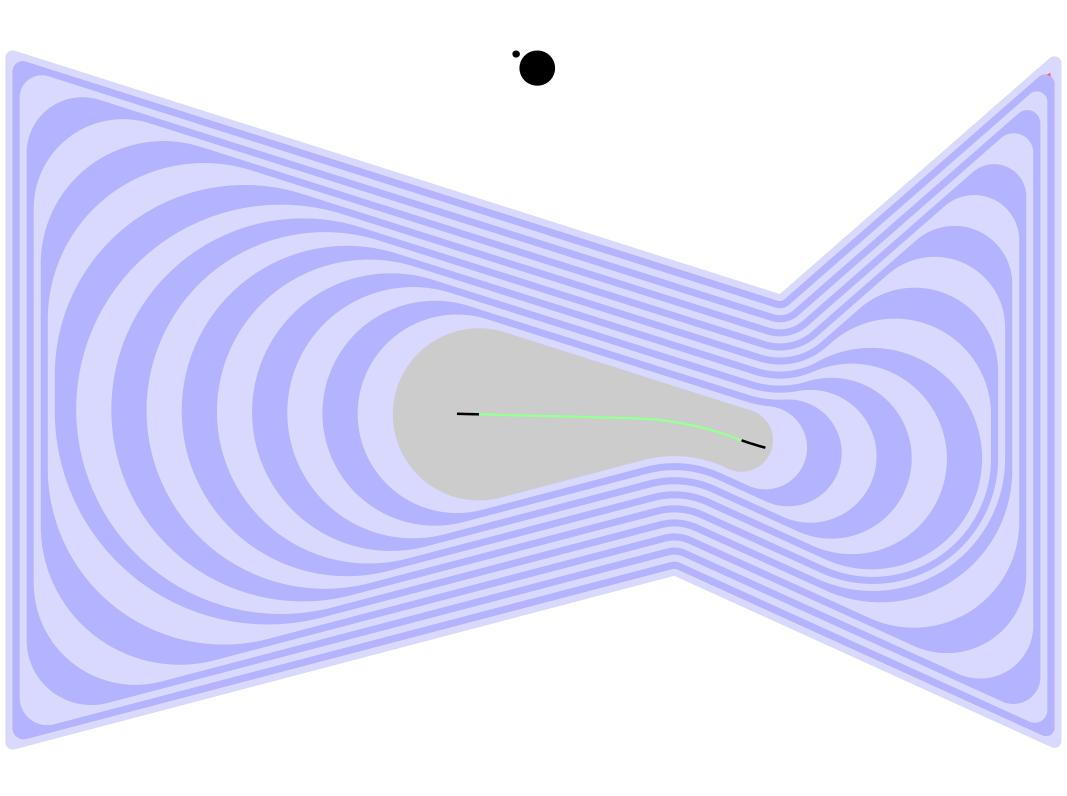


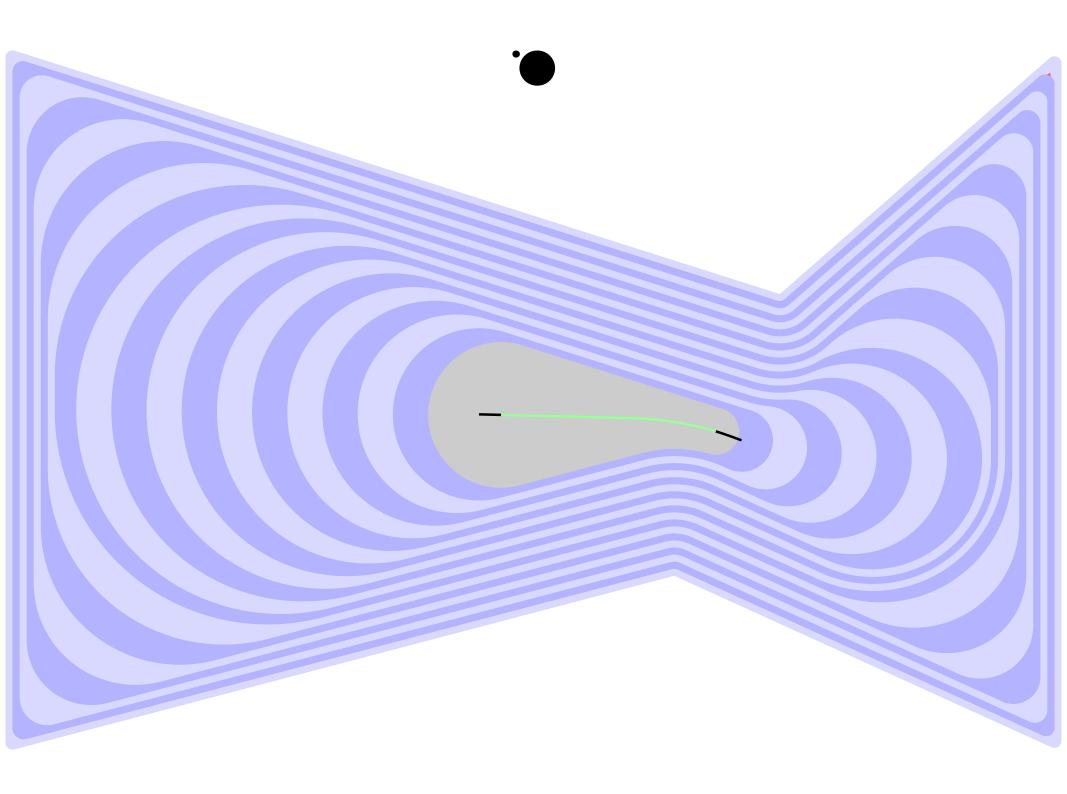


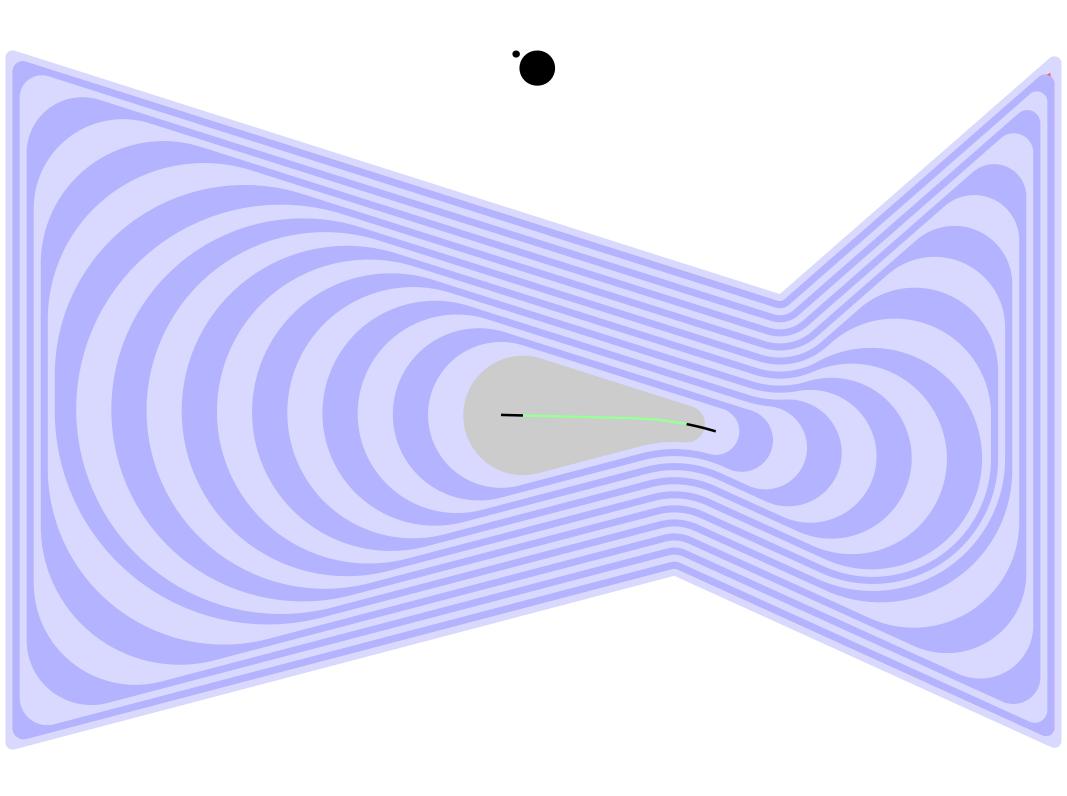


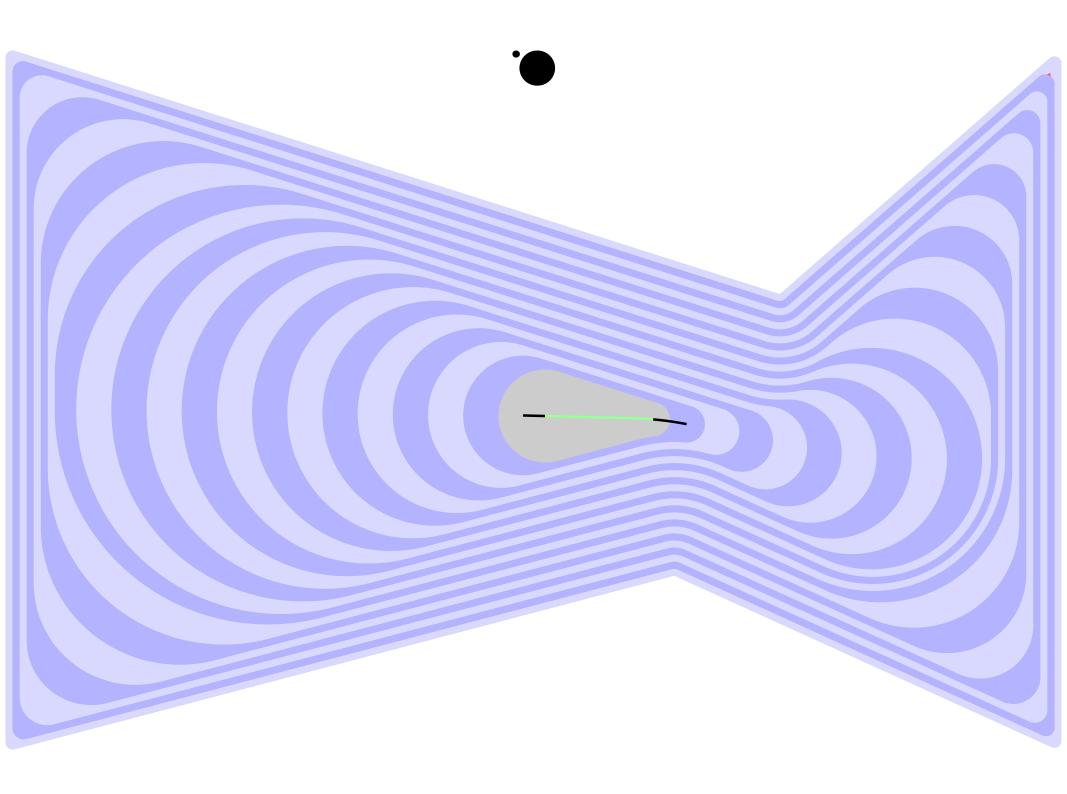


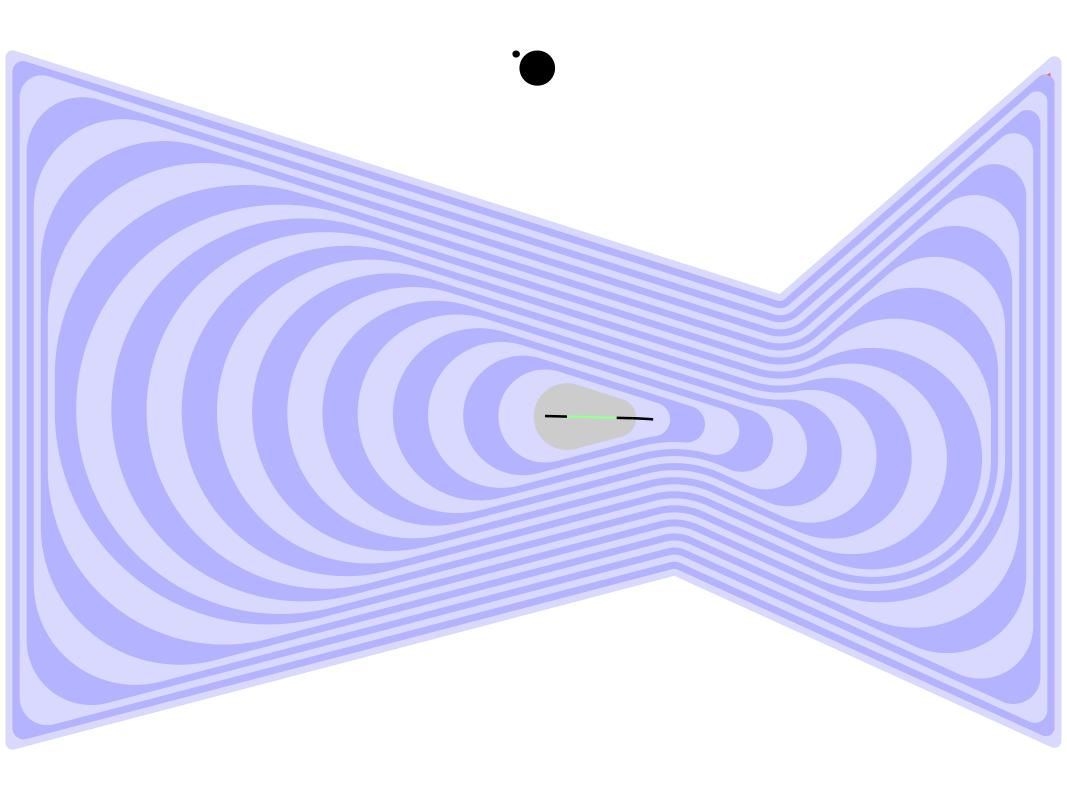


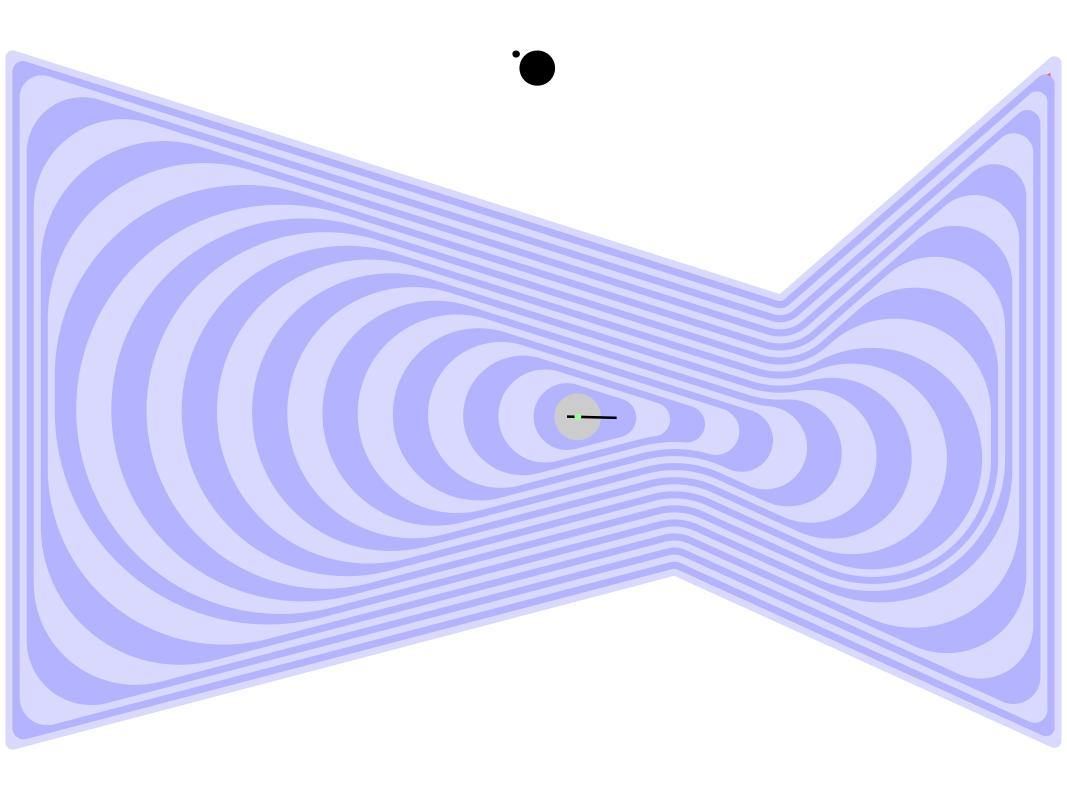


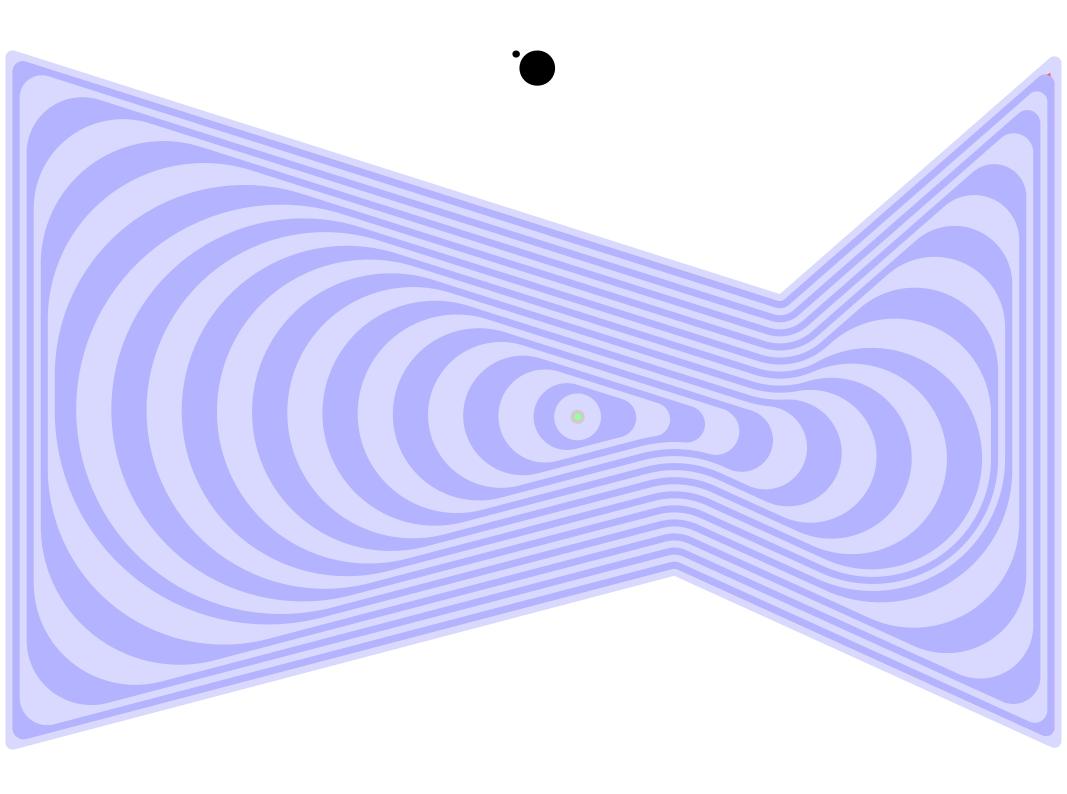


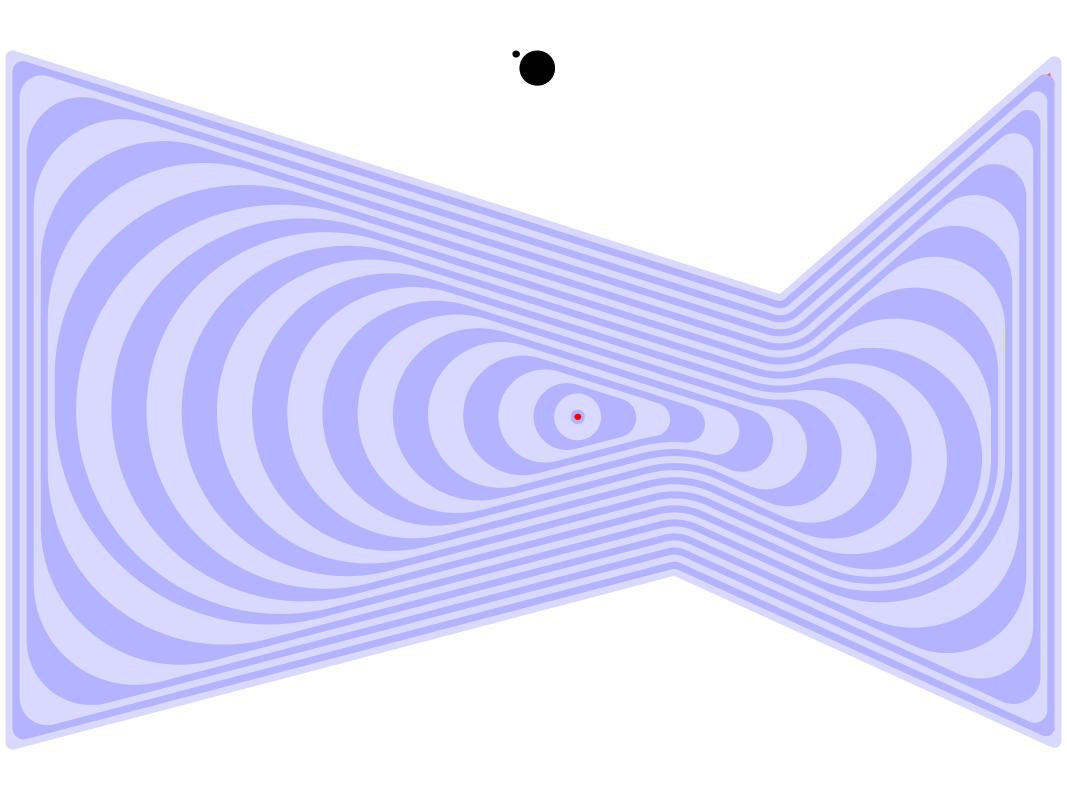


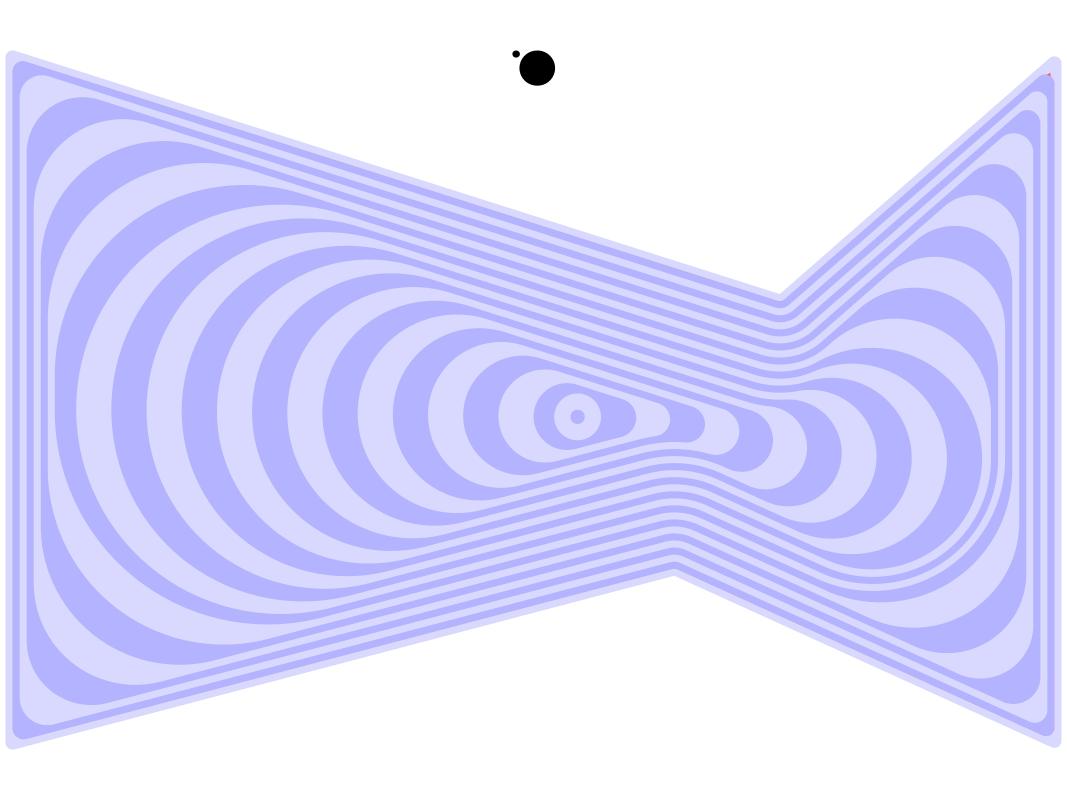






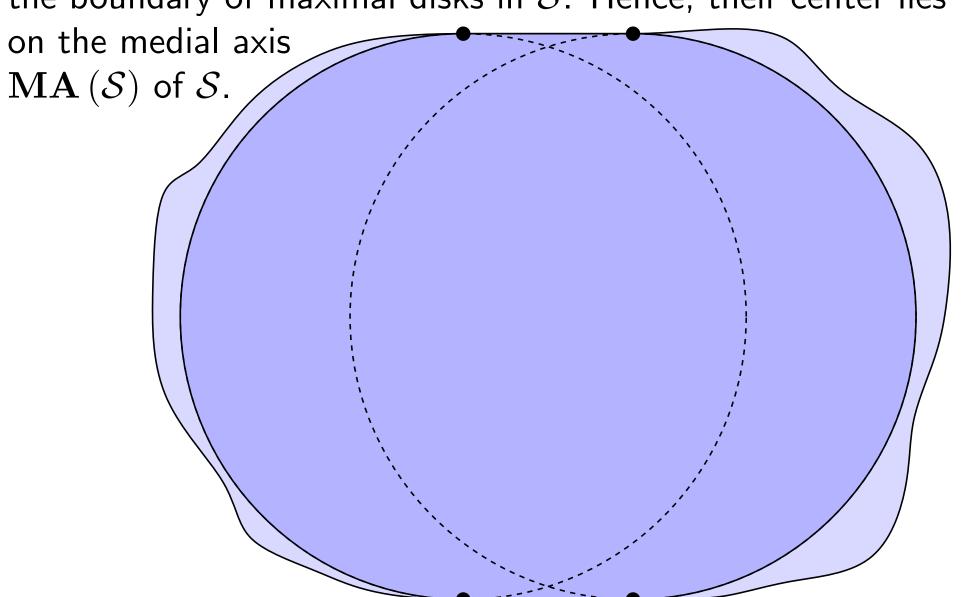






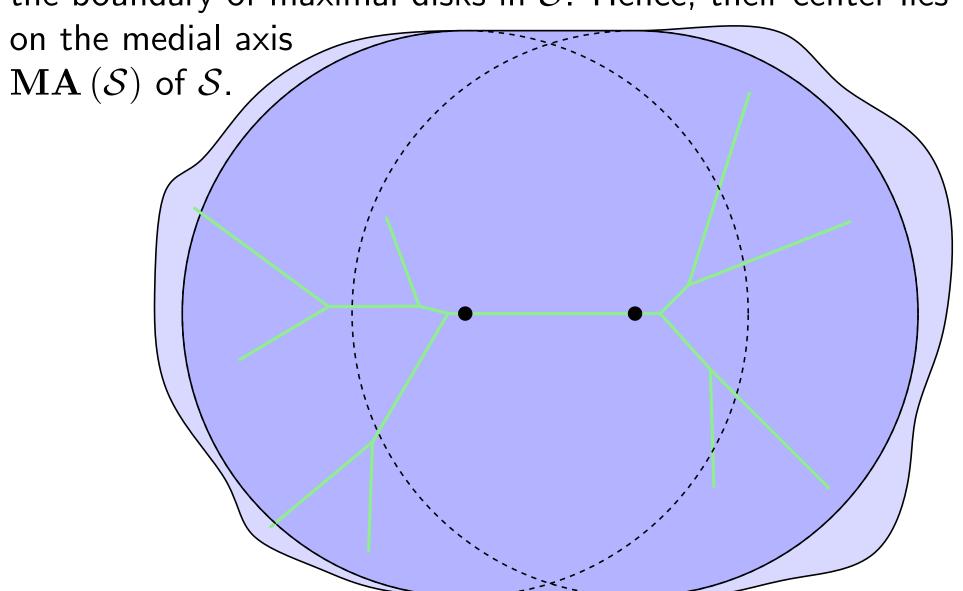
Variable-width contouring

The circles supporting the tangent circular arcs are chosen as the boundary of maximal disks in S. Hence, their center lies



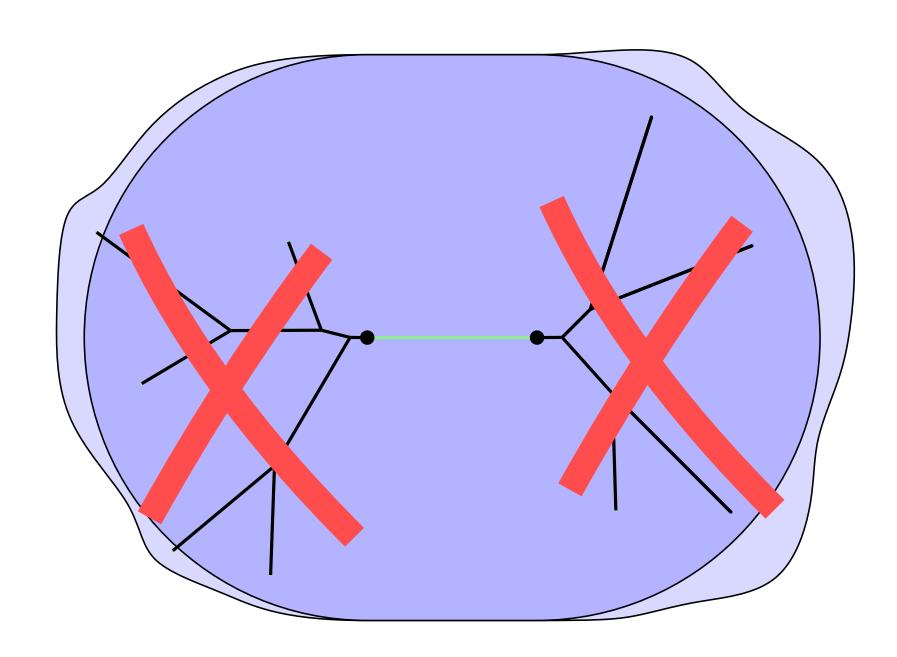
Variable-width contouring

The circles supporting the tangent circular arcs are chosen as the boundary of maximal disks in S. Hence, their center lies



Variable-width contouring

Replacing by circular arc = **trimming** the medial axis!



Variable-width contouring: basics

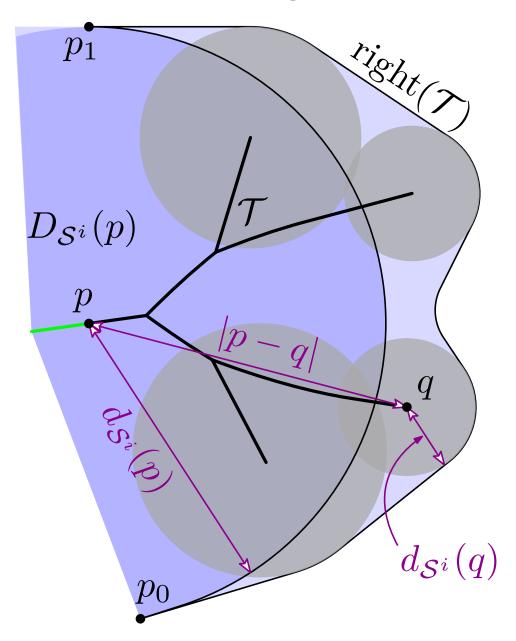
- 1. Trimming the medial axis: removes crescents of width $\leq 2\Gamma 2\gamma$ from the shape.
- 2. Parallel offset : removes a band of width exactly 2γ , which together with the crescents, form a bead of width varying within $[2\gamma, 2\Gamma]$.

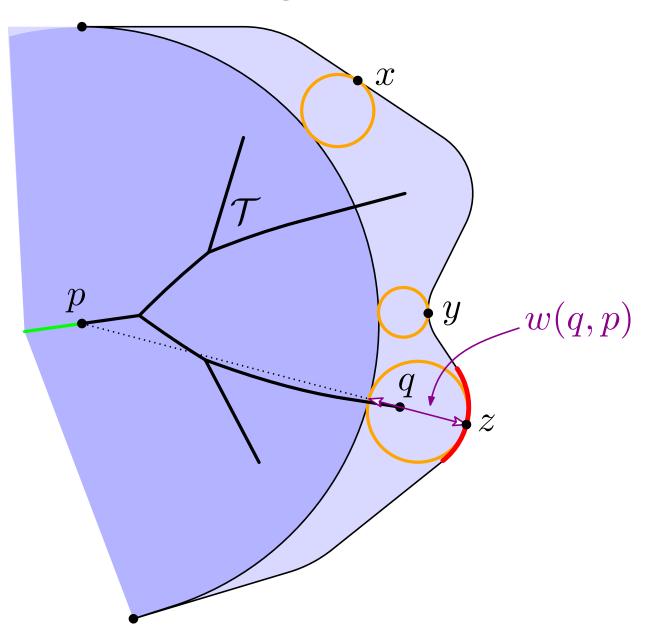
Variable-width contouring: basics

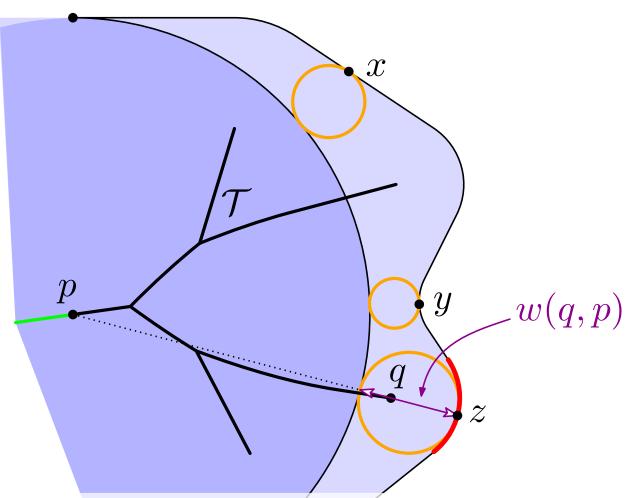
- 1. Trimming the medial axis: removes crescents of width $\leq 2\Gamma 2\gamma$ from the shape.
- 2. Parallel offset : removes a band of width exactly 2γ , which together with the crescents, form a bead of width varying within $[2\gamma, 2\Gamma]$.

If the input is a "polygon," the medial axis is computable (CGAL, BOOST) and the two operations above produce shapes with **linear** or **circular** boundary arcs only.

Corollary: in that case, each bead is bounded by linear or circular arcs only.

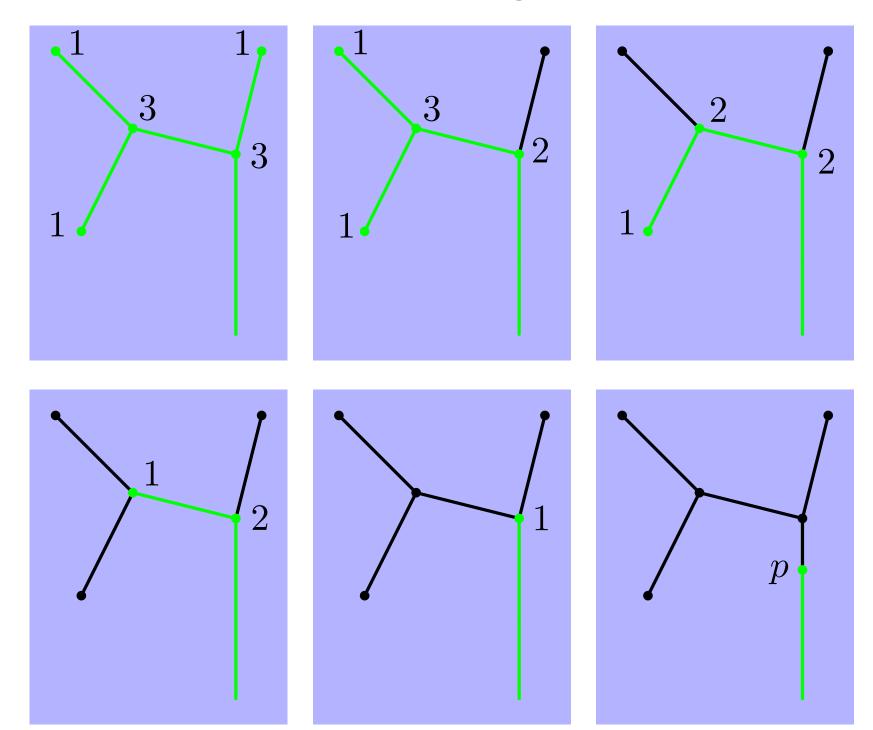


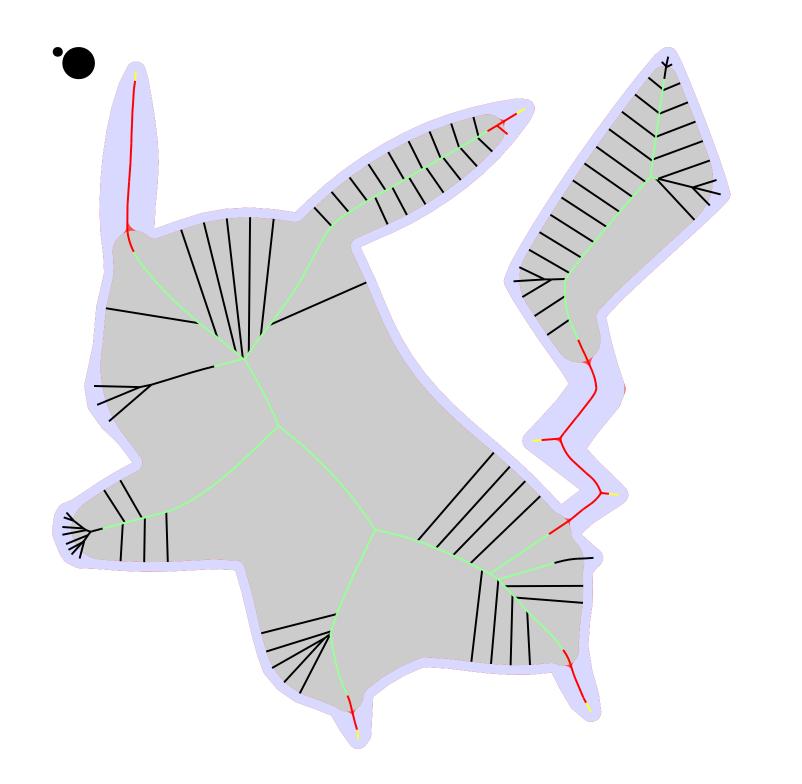


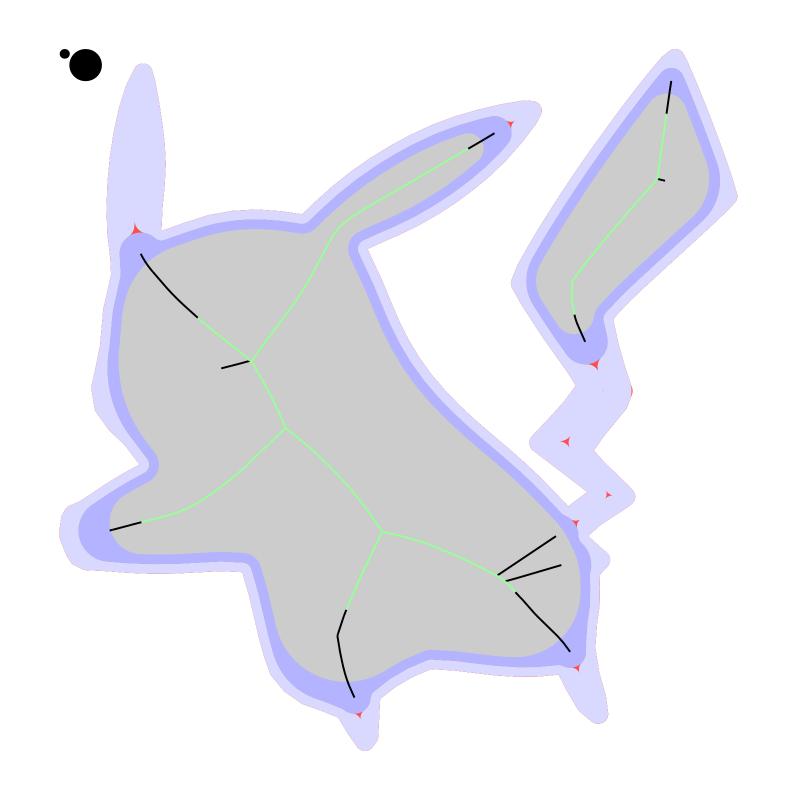


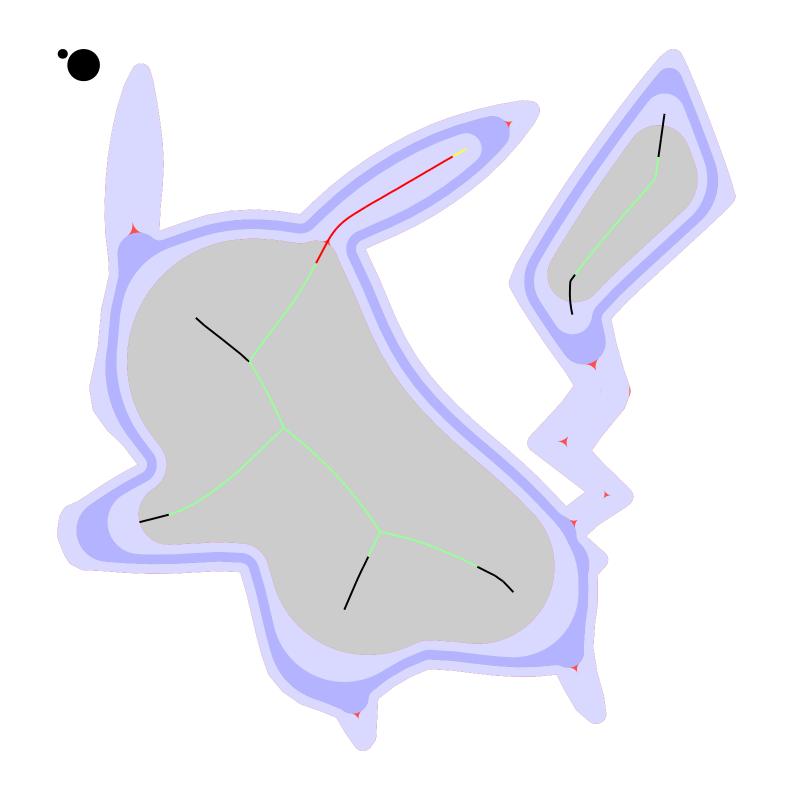
We say that the tree \mathcal{T} rooted at p is **trimmable** if for all leaf q of \mathcal{T} , $w(q,p) \leq W(q)$.

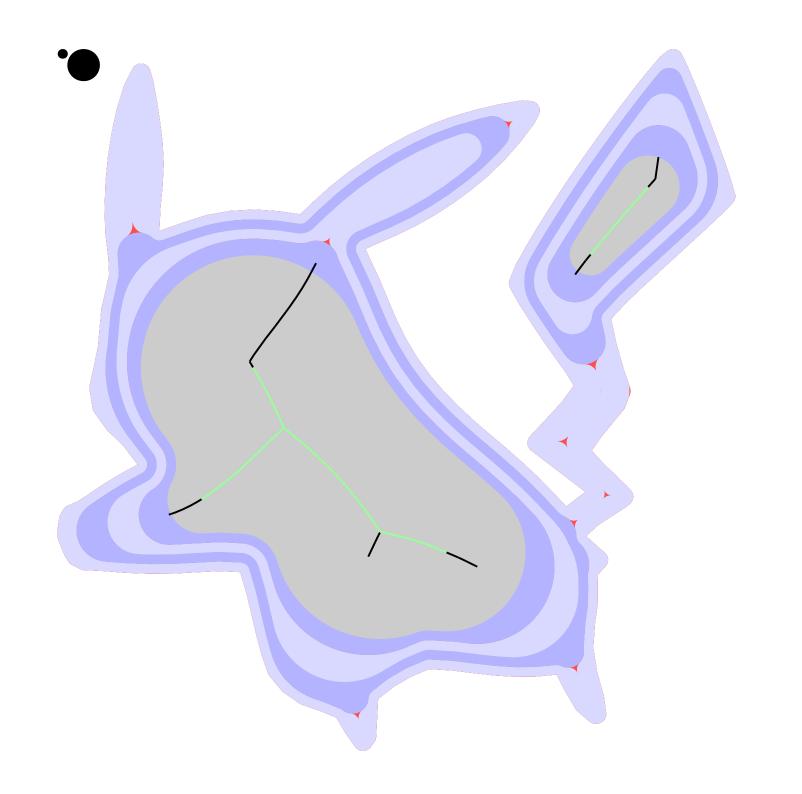
The algorithm grows a tree from each degree-1 vertex and finds all **maximal trimmable** trees.

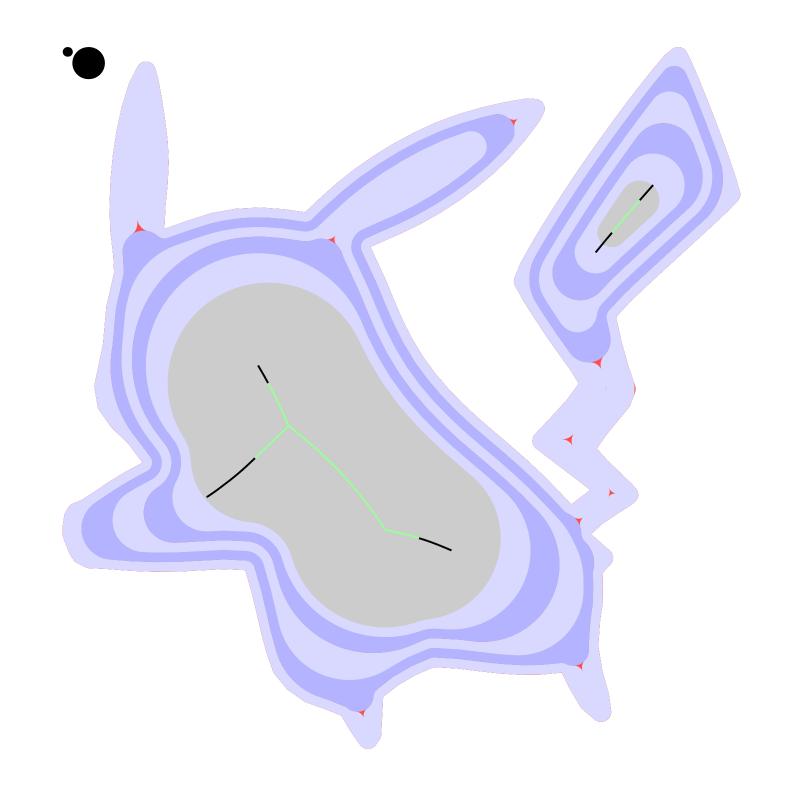


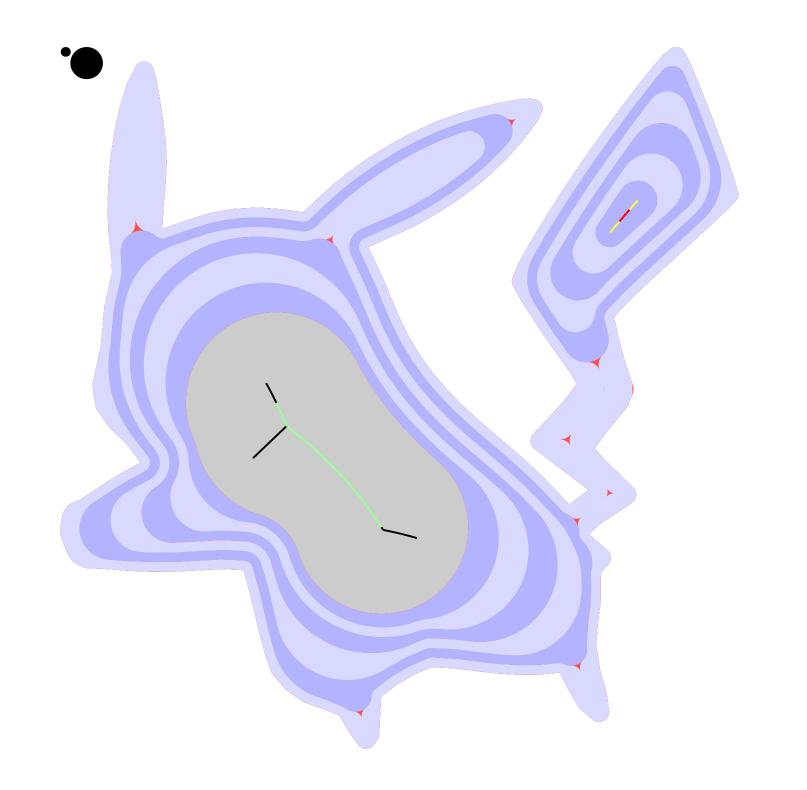


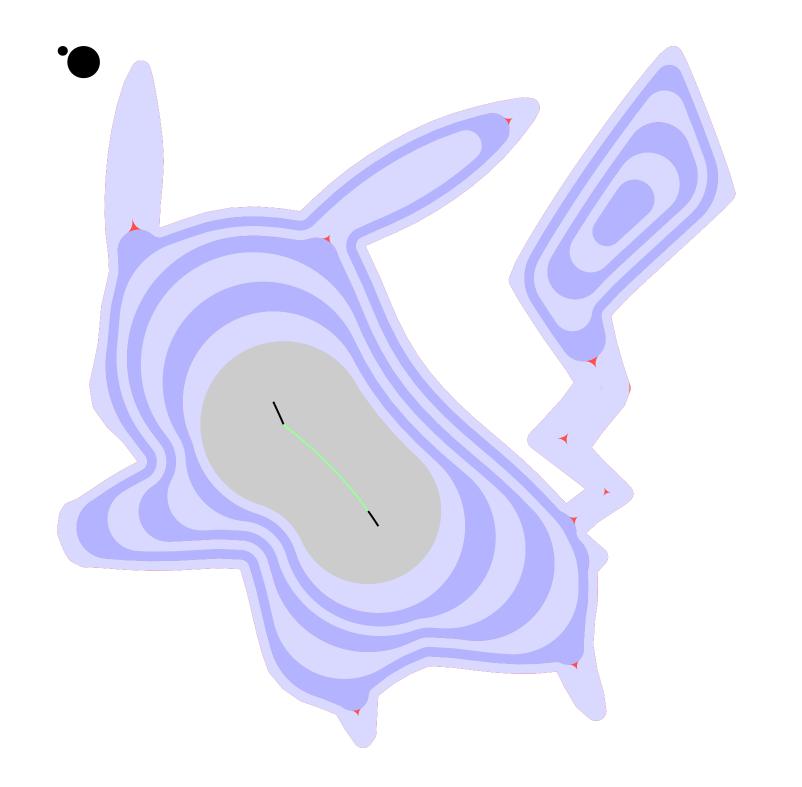


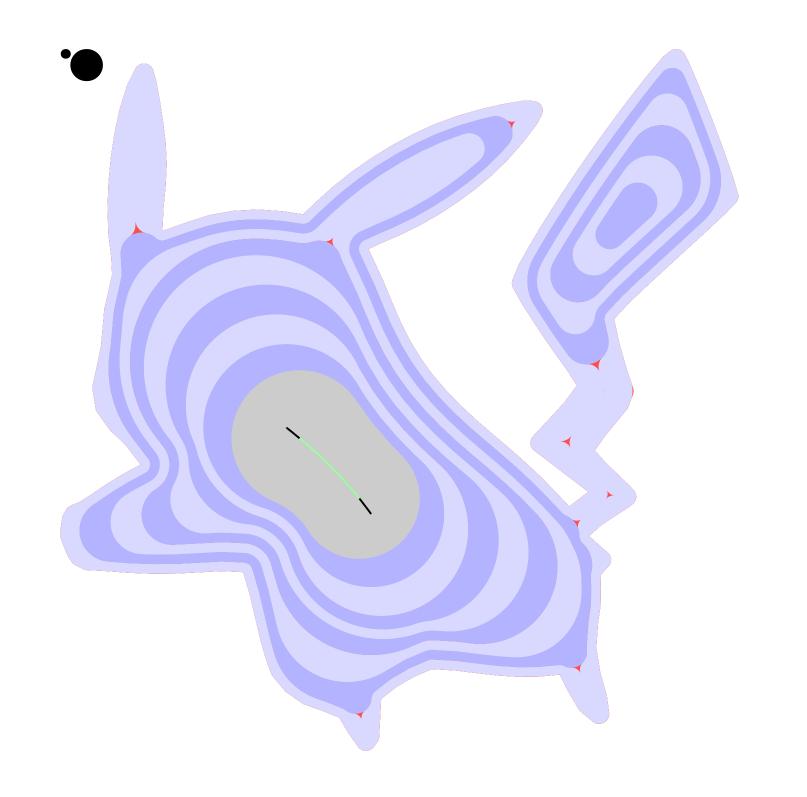


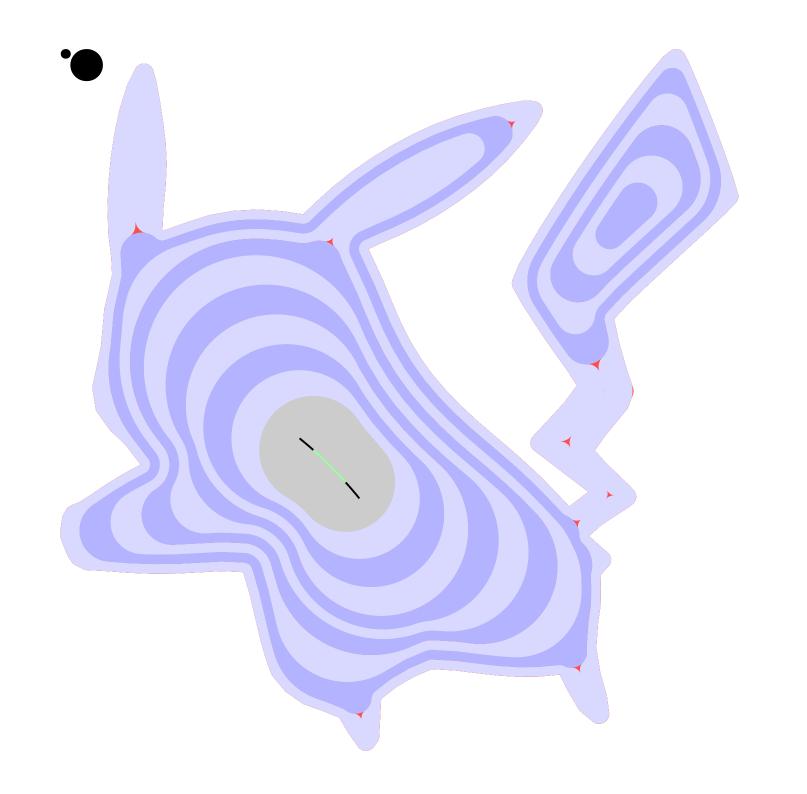


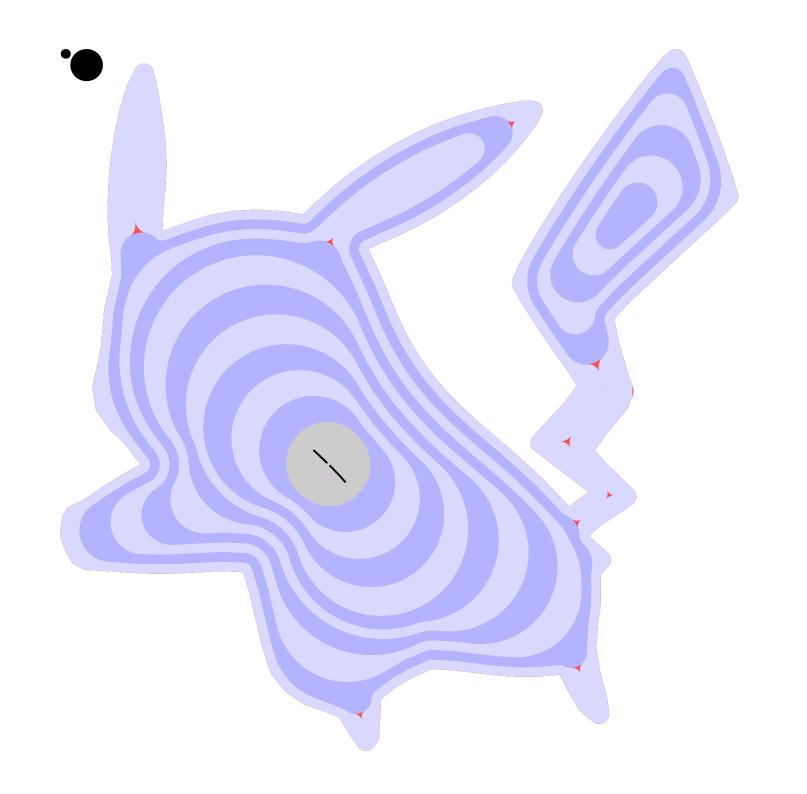


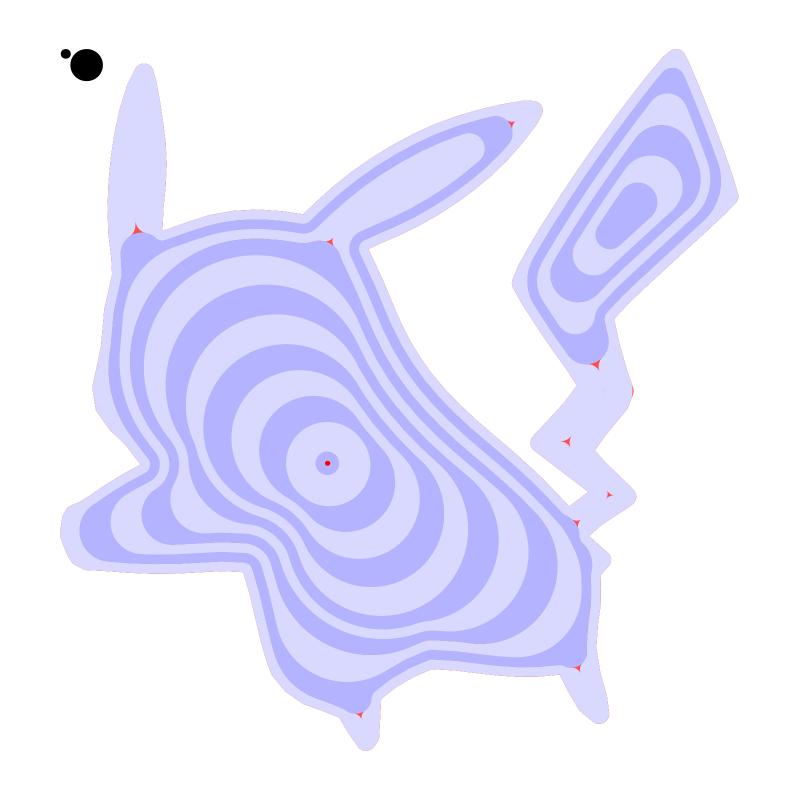


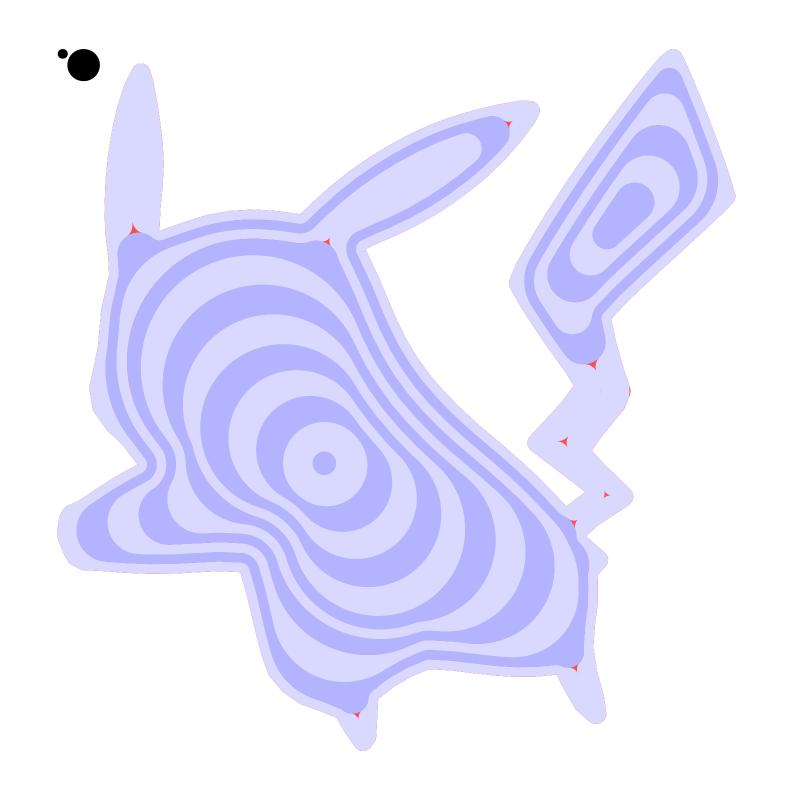












End of this presentation

See the paper for more about

- Collapsing
- Shaving
- Print-path sampling (center curve of each bead)
- Actual 3D-printed tests
- Comparison with state-of-the-art (almost 10x less underfill)
- Proof of no overfill

Thank you

